6 research outputs found
Overview of sensors suitable for active flow control methods
Hlavným cieľom tejto bakalárskej práce bolo vytvorenie prehľadu vyvíjaných a už aplikovaných senzorov pre účely aktívneho riadenia prúdov. Senzory musia splňovať niektoré podmienky, preto výber senzorov bol naviazaný na reálnych výsledkoch testovacích programov, popis ktorých tvorí prvú časť tejto bakalárskej práce. Opis technológie a princíp fungovania senzorov je popísaný v druhej časti tejto práce.The main purpose of this bachelor thesis was to create the overview of the sensors developed for the future active flow control applications and overview the sensors already used in the active flow control applications. The sensors have to fulfil several requirements, so selection for the overview was based on the real flight test programs results, which were described in the first part of the thesis. The sensors technology description and operation principles were included in the second part of the thesis
Analysis of a Sandwich panel under compressive loading
Hlavným cieľom tejto bakalárskej práce bolo navrhnúť vhodnú simulačnú metódu pre rovinnú šmykovú skúšku. Boli popísané rôzne typy porúch kompozitových panelov a rôzne prístupy k šmykovým skúškam. Boli navrhnute rôzne simulačne metódy pre jednoosú šmykovú skúšku. Na základe najdôležitejších kritérií, bol zvolený najvhodnejší návrh. Šesť experimentov bolo nasimulovaných v súlade zo zvoleným návrhom. Výsledky simulácii a výpočtov boli porovnané pre utvorenie korelácie medzi hodnotami a overenia správnosti simulačného návrhu. Na základe daného porovnania, takisto boli zistene skutočnosti ohľadom wrinkling kvocientov a platnosti rovníc pre výpočet crimpingu.Main purpose of this bachelor’s thesis was to design appropriate simulation of the in-plane shear test and confirm it. Types of the composite panel failures and approaches to sandwich tests were discussed. Several simulation designs were proposed. Best design has been chosen, based on important criterions. Six experiments were simulated with chosen simulation design. Results of simulations and analytical calculations were compared. Some findings about wrinkling coefficients and crimping equation validity have been taken, based on the results comparison.
Overview of sensors suitable for active flow control methods
The main purpose of this bachelor thesis was to create the overview of the sensors developed for the future active flow control applications and overview the sensors already used in the active flow control applications. The sensors have to fulfil several requirements, so selection for the overview was based on the real flight test programs results, which were described in the first part of the thesis. The sensors technology description and operation principles were included in the second part of the thesis
Energy Dissipation Hypothesis Applied to Enhance the Affinity of Thrombin Binding Aptamer
Nucleic acid aptamers are artificial recognizing molecules that are capable of specific binding to a wide variety of targets. Aptamers are commonly selected from a huge library of oligonucleotides and improved by introducing several mutations or modular constructions. Although aptamers hold great promise as therapeutic and diagnostic tools, no simple approach to improve their affinity has been suggested yet. Our recent analysis of aptamer–protein complexes revealed that aptamer affinity correlates with the size of an amino acid sidechain in the protein interface that was explained by efficient dissipation of the energy released during complex formation. G-quadruplex-based thrombin aptamers are not involved in the described dependence. Moreover, aptamers to the same thrombin site have 100-fold differences in affinity. Here we focused on a detailed analysis of the nucleic acid interface of thrombin–aptamer complexes. High affinity of the aptamers was shown to correlate with the solvent accessibility of the apolar part of recognizing loops. To prove the concept experimentally, these loops were modified to enhance contact with the solvent. Dissociation rates of the aptamer–thrombin complexes were drastically slowed due to these modifications. In full correspondence with the energy dissipation hypothesis, the modifications improved both the stability of the G-quadruplexes and affinity to thrombin. The most evident effect was shown for unstable Na+-coordinated G-quadruplexes. These data are of high interest for a directed improvement of aptamers introducing unnatural modifications into the ‘hot spot’ residues.</jats:p
Energy Dissipation Hypothesis Applied to Enhance the Affinity of Thrombin Binding Aptamer
Nucleic acid aptamers are artificial recognizing molecules that are capable of specific binding to a wide variety of targets. Aptamers are commonly selected from a huge library of oligonucleotides and improved by introducing several mutations or modular constructions. Although aptamers hold great promise as therapeutic and diagnostic tools, no simple approach to improve their affinity has been suggested yet. Our recent analysis of aptamer–protein complexes revealed that aptamer affinity correlates with the size of an amino acid sidechain in the protein interface that was explained by efficient dissipation of the energy released during complex formation. G-quadruplex-based thrombin aptamers are not involved in the described dependence. Moreover, aptamers to the same thrombin site have 100-fold differences in affinity. Here we focused on a detailed analysis of the nucleic acid interface of thrombin–aptamer complexes. High affinity of the aptamers was shown to correlate with the solvent accessibility of the apolar part of recognizing loops. To prove the concept experimentally, these loops were modified to enhance contact with the solvent. Dissociation rates of the aptamer–thrombin complexes were drastically slowed due to these modifications. In full correspondence with the energy dissipation hypothesis, the modifications improved both the stability of the G-quadruplexes and affinity to thrombin. The most evident effect was shown for unstable Na+-coordinated G-quadruplexes. These data are of high interest for a directed improvement of aptamers introducing unnatural modifications into the ‘hot spot’ residues
Laser‐Synthesized Germanium Nanoparticles as Biodegradable Material for Near‐Infrared Photoacoustic Imaging and Cancer Phototherapy
Abstract Biodegradable nanomaterials can significantly improve the safety profile of nanomedicine. Germanium nanoparticles (Ge NPs) with a safe biodegradation pathway are developed as efficient photothermal converters for biomedical applications. Ge NPs synthesized by femtosecond‐laser ablation in liquids rapidly dissolve in physiological‐like environment through the oxidation mechanism. The biodegradation of Ge nanoparticles is preserved in tumor cells in vitro and in normal tissues in mice with a half‐life as short as 3.5 days. Biocompatibility of Ge NPs is confirmed in vivo by hematological, biochemical, and histological analyses. Strong optical absorption of Ge in the near‐infrared spectral range enables photothermal treatment of engrafted tumors in vivo, following intravenous injection of Ge NPs. The photothermal therapy results in a 3.9‐fold reduction of the EMT6/P adenocarcinoma tumor growth with significant prolongation of the mice survival. Excellent mass‐extinction of Ge NPs (7.9 L g−1 cm−1 at 808 nm) enables photoacoustic imaging of bones and tumors, following intravenous and intratumoral administrations of the nanomaterial. As such, strongly absorbing near‐infrared‐light biodegradable Ge nanomaterial holds promise for advanced theranostics
