34 research outputs found

    Failure of the ERBE scanner instrument aboard NOAA 10 spacecraft and results of failure analysis

    Get PDF
    The Earth Radiation Budget Experiment (ERBE) scanner instrument on the NOAA 10 spacecraft malfunctioned on May 22, 1989, after more than 4 years of in-flight operation. After the failure, all instrument operational mode commands were tested and the resulting data analyzed. Details of the tests and analysis of output data are discussed therein. The radiometric and housekeeping data appear to be valid. However, the instrument will not correctly execute operational scan mode commands or the preprogrammed calibration sequences. The data indicate the problem is the result of a failure in the internal address decoding circuity in one of the ROM (read only memory) chips of the instrument computer

    Biocompatibility, bone healing, and safety evaluation in rabbits with an IlluminOss bone stabilization system

    No full text
    Bone healing, biocompatibility, and safety employing the IlluminOss System (IS), comprised of an inflatable balloon filled with photopolymerizable liquid monomer, was evaluated in New Zealand white rabbits. Successful bone healing and callus remodeling over 6 months was demonstrated radiologically and histologically with IS implants in fenestrated femoral cortices. Biocompatibility was demonstrated with IS implants in brushed, flushed femoral intramedullary spaces, eliciting no adverse, local, or systemic responses and with similar biocompatibility to K-wires in contralateral femurs up to 1 year post-implant. Lastly simulated clinical failures demonstrated the safety of IS implants up to 1 year in the presence of liquid or polymerized polymer within the intramedullary space. Polymerized material displayed cortical bone and vasculature effects comparable to mechanical disruption of the endosteum. In the clinically unlikely scenario with no remediation or polymerization, a high dose monomer injection resulted in marked necrosis of cortical bone, as well as associated vasculature, endosteum, and bone marrow. Overall, when polymerized and hardened within bone intramedullary spaces, this light curable monomer system may provide a safe and effective method for fracture stabilization. Keywords: fracture stabilization; light‐curable; intramedullary; biocompatibility; polymerNational Institute of Health (U.S.) (Grant R01 GM‐49039

    Particulates from hydrophilic-coated guiding sheaths embolise to the brain

    No full text
    available in PMC 2016 March 23Aims: We sought to evaluate the incidence of embolic material in porcine brains following vascular interventions using hydrophilic-coated sheaths. Methods and results: A new self-expanding stent and delivery system (SDS) was deployed through a hydrophilic-coated (Flexor® Ansel; Cook Medical, Bloomington, IN, USA) guiding sheath into the iliac and/or carotid arteries of 23 anaesthetised Yucatan mini swine. The animals were euthanised at three, 30, 90 and 180 days and their brains were removed for histological analysis. In an additional single control animal, the guiding sheath was advanced but no SDS was deployed. Advancement of the coated guiding sheath with or without the SDS was associated with frequent foreign material in the arterioles of the brain. The embolic material was amorphous, non-refractile, non-crystalline, non-birefringent and typically lightly basophilic with a slightly stippled appearance on haematoxylin and eosin (H&E) stain. Material was observed at all time points involving 54% of all study animals (i.e., test and control) and in vitro after incubation in 0.9% saline. Conclusions: The hydrophilic coating on a clinically used guiding sheath readily avulses and embolises to the brain during deployment in a porcine model. Further documentation of this effect and monitoring in clinical scenarios are warranted.National Institutes of Health (U.S.) (NIH (R01 GM 49039)
    corecore