41 research outputs found

    Soils of a Mediterranean hot spot of biodiversity and endemism (Sardinia, Tyrrhenian Islands) are inhabited by pan-European, invasive species of <i>Hypocrea/Trichoderma</i>

    Get PDF
    We have used a Mediterranean hot spot of biodiversity (the Island of Sardinia) to investigate the impact of abiotic factors on the distribution of species of the common soil fungus Trichoderma. To this end, we isolated 482 strains of Hypocrea/Trichoderma from 15 soils comprising undisturbed and disturbed environments (forest, shrub lands and undisturbed or extensively grazed grass steppes respectively). Isolates were identified at the species level by the oligonucleotide BarCode for Hypocrea/Trichoderma (Trich OKEY), sequence similarity analysis (TrichoBLAST) and phylogenetic inferences. The majority of the isolates were positively identified as pan-European and/or pan-global Hypocrea/Trichoderma species from sections Trichoderma and Pachybasium, comprising H. lixii/T. harzianum, T. gamsii, T. spirale, T. velutinum, T. hamatum, H. koningii/T. koningii, H. virens/T. virens, T. tomentosum, H. semiorbis, H. viridescens/T. viridescens, H. atroviridis/T. atroviride, T. asperellum, H. koningiopsis/T. koningiopsis and Trichoderma sp. Vd2. Only one isolate represented a new, undescribed species belonging to the Harzianum–Catoptron Clade. Internal transcribed spacer sequence analysis revealed only one potentially endemic internal transcribed spacer 1 allele of T. hamatum. All other species exhibited genotypes that were already found in Eurasia or in other continents. Only few cases of correlation of species occurrence with abiotic factors were recorded. The data suggest a strong reduction of native Hypocrea/ Trichoderma diversity, which was replaced by extensive invasion of species from Eurasia, Africa and the Pacific Basin

    The Trichoderma koningii aggregate species

    Get PDF
    The morphological concept of Trichoderma koningii is found to include several species that differ from each other in details of phenotype (including conidium morphology, growth rate) and biogeography. Phylogenetic analysis utilizing partial sequences of the translation-elongation factor 1 alpha (tef1), as well as fragments of actin and calmodulin genes, indicate that phenotypic characters typical of T. koningii evolved independently in three well-separated main lineages. Combined molecular and phenotype data lead to the development of a taxonomy with the recognition of twelve taxonomic species and one variety within the three lineages. These lineages include: (1) T. koningii and T. ovalisporum and the new species T. caribbaeum var. caribbaeum, T. caribbaeum var. aequatoriale, T. dorotheae, T. dingleyae, T. intricatum, T. koningiopsis, T. petersenii and T. taiwanense; (2) the new species T. rogersonii and T. austrokoningii, and (3) the new anamorph T. stilbohypoxyli

    Hypocrea rufa/Trichoderma viride: a reassessment, and description of five closely related species with and without warted conidia

    Get PDF
    The type species of the genus Hypocrea (Hypocreaceae, Hypocreales, Ascomycota, Fungi), H. rufa, is re-defined and epitypified using a combination of phenotype (morphology of teleomorphs and anamorphs, and characteristics in culture) and phylogenetic analyses of the translation-elongation factor 1α gene. Its anamorph, T. viride, the type species of Trichoderma, is re-described and epitypified. Eidamia viridescens is combined as Trichoderma viridescens and is recognised as one of the most morphologically and phylogenetically similar relatives of T. viride. Its teleomorph is newly described as Hypocrea viridescens. Contrary to frequent citations of H. rufa and T. viride in the literature, this species is relatively rare. Although both T. viride and T. viridescens have a wide geographic distribution, their greatest genetic diversity appears to be in Europe and North America. Hypocrea vinosa is characterised and its anamorph, T. vinosum sp. nov., is described. Conidia of T. vinosum are subglobose and warted. The new species T. gamsii is proposed. It shares eidamia-like morphology of conidiophores with T. viridescens, but it has smooth, ellipsoidal conidia that have the longest L/W ratio that we have seen in Trichoderma. Trichoderma scalesiae, an endophyte of trunks of Scalesia pedunculata in the Galapagos Islands, is described as new. It only produces conidia on a low-nutrient agar to which filter paper has been added. Additional phylogenetically distinct clades are recognised and provisionally delimited from the species here described. Trichoderma neokoningii, a T. koningii-like species, is described from a collection made in Peru on a fruit of Theobroma cacao infected with Moniliophthora roreri

    Biology and biotechnology of Trichoderma

    Get PDF
    Fungi of the genus Trichoderma are soilborne, green-spored ascomycetes that can be found all over the world. They have been studied with respect to various characteristics and applications and are known as successful colonizers of their habitats, efficiently fighting their competitors. Once established, they launch their potent degradative machinery for decomposition of the often heterogeneous substrate at hand. Therefore, distribution and phylogeny, defense mechanisms, beneficial as well as deleterious interaction with hosts, enzyme production and secretion, sexual development, and response to environmental conditions such as nutrients and light have been studied in great detail with many species of this genus, thus rendering Trichoderma one of the best studied fungi with the genome of three species currently available. Efficient biocontrol strains of the genus are being developed as promising biological fungicides, and their weaponry for this function also includes secondary metabolites with potential applications as novel antibiotics. The cellulases produced by Trichoderma reesei, the biotechnological workhorse of the genus, are important industrial products, especially with respect to production of second generation biofuels from cellulosic waste. Genetic engineering not only led to significant improvements in industrial processes but also to intriguing insights into the biology of these fungi and is now complemented by the availability of a sexual cycle in T. reesei/Hypocrea jecorina, which significantly facilitates both industrial and basic research. This review aims to give a broad overview on the qualities and versatility of the best studied Trichoderma species and to highlight intriguing findings as well as promising applications

    Nutrition of Borneo\u27s ‘exploding’ ants (Hymenoptera: Formicidae: Colobopsis): a preliminary assessment

    No full text
    Functional effects of ants in rainforest canopies depend on difficult to characterize ant diets. In Bornean dipterocarp forests, certain diurnal, arboreal, territorial, and ecologically dominant ‘COCY’ ant species (Colobopsis cylindrica clade) grazed epiphytic biofilms on adaxial leaf surfaces, as well as on tree trunks and branches. Microscopic examination of worker buccal pellets revealed numerous (mainly ascomycete) fungal spores, together with insect appendages and cuticle. Direct observations, video-imaging, and δ15N isotope data rule out feeding by predation, but isotopes cannot separate fungi from plant and insect exudates as principal nitrogen sources. Lipid-rich products, extracted from pellets in situ, are hypothesized sources of essential sterols. Also present in pellets were colorful mandibular gland (MG) compounds unique to this ant clade and deployed, as a derived character state, in suicidal defense of foraging territories. Mildly antimicrobial and highly adhesive MG products also occur basally in the clade and may have first evolved for roles in microbial sterilization and food-gathering and processing. Proteomic studies of YG COCY ants detected 2% proteins in hypertrophied, product-filled MG reservoirs, but SDS-PAGE qualitative analysis revealed mostly low-molecular mass proteins and peptides (8–15 kDa), too small for enzymes but consistent with membrane-binding proteins and/or antimicrobial peptides. Breakdown of chitin and chitosan in pellets may occur with enzymes derived from molting fluids in insect cuticle (proteases and chitinases) and/or fungi and bacteria. To the extent that COCY workers collect and consume pathogenic and/or beneficial phyllosphere microbes, ant effects on plants may be mediated by these activities
    corecore