830 research outputs found
A post-Newtonian diagnosis of quasiequilibrium configurations of neutron star-neutron star and neutron star-black hole binaries
We use a post-Newtonian diagnostic tool to examine numerically generated
quasiequilibrium initial data sets for non-spinning double neutron star and
neutron star-black hole binary systems. The PN equations include the effects of
tidal interactions, parametrized by the compactness of the neutron stars and by
suitable values of ``apsidal'' constants, which measure the degree of
distortion of stars subjected to tidal forces. We find that the post-Newtonian
diagnostic agrees well with the double neutron star initial data, typically to
better than half a percent except where tidal distortions are becoming extreme.
We show that the differences could be interpreted as representing small
residual eccentricity in the initial orbits. In comparing the diagnostic with
preliminary numerical data on neutron star-black hole binaries, we find less
agreement.Comment: 17 pages, 6 tables, 8 figure
Electromagnetic Modes in Deformed Nuclei
A strength function method is adopted to describe a coupling between electric
and magnetic modes of different multipolarity. The collective vibrations are
analysed for a separable residual interaction in the framework of the
random-phase approximation. The coupling between and giant resonances
is considered as an illustrative example.Comment: 7 pages (latex), 1 figure (ps file), an invited talk at the workshop
"Symmetries and Spin - Praha 98", to be published in Czech.J.Phys., 199
Landmine Detection and Discrimination using High-Pressure Waterjets
Methods of locating and identifying buried landmines using high-pressure waterjets were investigated. Methods were based on the sound produced when the waterjet strikes a buried object. Three classification techniques were studied, based on temporal, spectral, and a combination of temporal and spectral approaches using weighted density distribution functions, a maximum likelihood approach, and hidden Markov models, respectively. Methods were tested with laboratory data from low-metal content simulants and with field data from inert real landmines. Results show that the sound made when the waterjet hit a buried object could be classified with a 90% detection rate and an 18% false alarm rate. In a blind field test using 3 types of harmless objects and 7 types of landmines, buried objects could be accurately classified as harmful or harmless 60%-90% of the time. High-pressure waterjets may serve as a useful companion to conventional detection and classification methods
The Rossiter-McLaughlin effect and analytic radial velocity curves for transiting extrasolar planetary systems
A transiting extrasolar planet sequentially blocks off the light coming from
the different parts of the disk of the host star in a time dependent manner.
Due to the spin of the star, this produces an asymmetric distortion in the line
profiles of the stellar spectrum, leading to an apparent anomaly of the radial
velocity curves, known as the Rossiter - McLaughlin effect. Here, we derive
approximate but accurate analytic formulae for the anomaly of radial velocity
curves taking account of the stellar limb darkening. The formulae are
particularly useful in extracting information of the projected angle between
the planetary orbit axis and the stellar spin axis, \lambda, and the projected
stellar spin velocity, V sin I_s. We create mock samples for the radial curves
for the transiting extrasolar system HD209458, and demonstrate that constraints
on the spin parameters (V sin I_s, \lambda) may be significantly improved by
combining our analytic template formulae and the precision velocity curves from
high-resolution spectroscopic observations with 8-10 m class telescopes. Thus
future observational exploration of transiting systems using the Rossiter -
McLaughlin effect is one of the most important probes to better understanding
of the origin of extrasolar planetary systems, especially the origin of their
angular momentum.Comment: 39 pages, 16 figures, Accepted to ApJ. To match the published version
(ApJ 623, April 10 issue
Two New Tidally Distorted White Dwarfs
We identify two new tidally distorted white dwarfs (WDs), SDSS
J174140.49+652638.7 and J211921.96-001825.8 (hereafter J1741 and J2119). Both
stars are extremely low mass (ELM, < 0.2 Msun) WDs in short-period, detached
binary systems. High-speed photometric observations obtained at the McDonald
Observatory reveal ellipsoidal variations and Doppler beaming in both systems;
J1741, with a minimum companion mass of 1.1 Msun, has one of the strongest
Doppler beaming signals ever observed in a binary system (0.59 \pm 0.06%
amplitude). We use the observed ellipsoidal variations to constrain the radius
of each WD. For J1741, the star's radius must exceed 0.074 Rsun. For J2119, the
radius exceeds 0.10 Rsun. These indirect radius measurements are comparable to
the radius measurements for the bloated WD companions to A-stars found by the
Kepler spacecraft, and they constitute some of the largest radii inferred for
any WD. Surprisingly, J1741 also appears to show a 0.23 \pm 0.06% reflection
effect, and we discuss possible sources for this excess heating. Both J1741 and
J2119 are strong gravitational wave sources, and the time-of-minimum of the
ellipsoidal variations can be used to detect the orbital period decay. This may
be possible on a timescale of a decade or less.Comment: 6 pages, 4 figures, accepted for publication in the Astrophysical
Journa
Relativistic tidal properties of neutron stars
We study the various linear responses of neutron stars to external
relativistic tidal fields. We focus on three different tidal responses,
associated to three different tidal coefficients: (i) a gravito-electric-type
coefficient G\mu_\ell=[length]^{2\ell+1} measuring the \ell^{th}-order mass
multipolar moment GM_{a_1... a_\ell} induced in a star by an external
\ell^{th}-order gravito-electric tidal field G_{a_1... a_\ell}; (ii) a
gravito-magnetic-type coefficient G\sigma_\ell=[length]^{2\ell+1} measuring the
\ell^{th} spin multipole moment G S_{a_1... a_\ell} induced in a star by an
external \ell^{th}-order gravito-magnetic tidal field H_{a_1... a_\ell}; and
(iii) a dimensionless ``shape'' Love number h_\ell measuring the distortion of
the shape of the surface of a star by an external \ell^{th}-order
gravito-electric tidal field. All the dimensionless tidal coefficients
G\mu_\ell/R^{2\ell+1}, G\sigma_\l/R^{2\ell+1} and h_\ell (where R is the radius
of the star) are found to have a strong sensitivity to the value of the star's
``compactness'' c\equiv GM/(c_0^2 R) (where we indicate by c_0 the speed of
light). In particular, G\mu_\l/R^{2\l+1}\sim k_\ell is found to strongly
decrease, as c increases, down to a zero value as c is formally extended to the
``black-hole (BH) limit'' c^{BH}=1/2. The shape Love number h_\ell is also
found to significantly decrease as c increases, though it does not vanish in
the formal limit c\to c^{BH}. The formal vanishing of \mu_\ell and \sigma_\ell
as c\to c^{BH} is a consequence of the no-hair properties of black holes; this
suggests, but in no way proves, that the effective action describing the
gravitational interactions of black holes may not need to be augmented by
nonminimal worldline couplings.Comment: 21 pages, 10 figures. Matches the published versio
Combined effects of tidal and rotational distortions on the equilibrium configuration of low-mass, pre-main sequence stars
In close binary systems, rotation and tidal forces of the component stars
deform each other and destroy their spherical symmetry. We present new models
for low-mass, pre-main sequence stars that include the combined distortion
effects of tidal and rotational forces on the equilibrium configuration of
stars. We investigate the effects of interaction between tides and rotation on
the stellar structure and evolution. The Kippenhahn & Thomas (1970)
approximation, along with the Clairaut-Legendre expansion for the gravitational
potential of a self-gravitating body, is used to take the distortion effects
into account. We obtained values of internal structure constants for low-mass,
pre-main sequence stars from stellar evolutionary models that consider the
combined effects of rotation and tidal forces due to a companion star. We also
derived a new expression for the rotational inertia of a tidally and
rotationally distorted star. Our distorted models were successfully used to
analyze the eclipsing binary system EK Cep, reproducing the stellar radii,
effective temperature ratio, lithium depletion, rotational velocities, and the
apsidal motion rate in the age interval of 15.5-16.7 Myr. In the low-mass
range, the assumption that harmonics greater than j=2 can be neglected seems
not to be fully justified, although it is widely used when analyzing the
apsidal motion of binary systems. The non-standard evolutionary tracks are
cooler than the standard ones, mainly for low-mass stars. Distorted models
predict more mass-concentrated stars at the zero-age main-sequence than
standard models
Testing gravitational theories using Eccentric Eclipsing Detached Binaries
In this paper we compare the effects of different theories of gravitation on
the apsidal motion of a sample of Eccentric Eclipsing Detached Binary stars.
The comparison is performed by using the formalism of the Post-Newtonian
parametrization to calculate the theoretical advance at periastron and compare
it to the observed one, after having considered the effects of the structure
and rotation of the involved stars. A variance analysis on the results of this
comparison, shows that no significant difference can be found due to the effect
of the different theories under test with respect to the standard General
Relativity. It will be possible to observe differences, as we would expect, by
checking the observed period variation on a much larger lapse of time. It can
also be noticed from our results, that f(R) theory is the nearest to GR with
respect to the other tested theories.Comment: 15 pages, 8 figures, 5 tables; Monthly Notices of the Royal
Astronomical Society (2012) "Early View". arXiv admin note: text overlap with
arXiv:gr-qc/0603071 by other author
High-dispersion absorption-line spectroscopy of AE Aqr
High-dispersion time-resolved spectroscopy of the unique magnetic cataclysmic variable AE Aqr is presented. A radial velocity analysis of the absorption lines yields K2= 168.7 ± 1 km s−1. Substantial deviations of the radial velocity curve from a sinusoid are interpreted in terms of intensity variations over the secondary star's surface. A complex rotational velocity curve as a function of orbital phase is detected which has a modulation frequency of twice the orbital frequency, leading to an estimate of the binary inclination angle that is close to 70°. The minimum and maximum rotational velocities are used to indirectly derive a mass ratio of q= 0.6 and a radial velocity semi-amplitude of the white dwarf of K1= 101 ± 3 km s−1. We present an atmospheric temperature indicator, based on the absorption-line ratio of Fe I and Cr I lines, whose variation indicates that the secondary star varies from K0 to K4 as a function of orbital phase. The ephemeris of the system has been revised, using more than 1000 radial velocity measurements, published over nearly five decades. From the derived radial velocity semi-amplitudes and the estimated inclination angle, we calculate that the masses of the stars are M1= 0.63 ± 0.05 M⊙; M2= 0.37 ± 0.04 M⊙, and their separation is a= 2.33 ± 0.02 R⊙. Our analysis indicates the presence of a late-type star whose radius is larger, by a factor of nearly 2, than the radius of a normal main-sequence star of the same mass. Finally, we discuss the possibility that the measured variations in the rotational velocity, temperature and spectral type of the secondary star as functions of orbital phase may, like the radial velocity variations, be attributable to regions of enhanced absorption on the star's surface
KOI 1224, a Fourth Bloated Hot White Dwarf Companion Found With Kepler
We present an analysis and interpretation of the Kepler binary system KOI
1224. This is the fourth binary found with Kepler that consists of a thermally
bloated, hot white dwarf in a close orbit with a more or less normal star of
spectral class A or F. As we show, KOI 1224 contains a white dwarf with Teff =
14400 +/- 1100 K, mass = 0.20 +/- 0.02 Msun, and radius = 0.103 +/- 0.004 Rsun,
and an F-star companion of mass = 1.59 +/- 0.07 Msun that is somewhat beyond
its terminal-age main sequence. The orbital period is quite short at 2.69802
days. The ingredients that are used in the analysis are the Kepler binary light
curve, including the detection of the Doppler boosting effect; the NUV and FUV
fluxes from the Galex images of this object; an estimate of the spectral type
of the F-star companion; and evolutionary models of the companion designed to
match its effective temperature and mean density. The light curve is modelled
with a new code named Icarus which we describe in detail. Its features include
the full treatment of orbital phase-resolved spectroscopy, Doppler boosting,
irradiation effects and transits/eclipses, which are particularly suited to
irradiated eclipsing binaries. We interpret the KOI 1224 system in terms of its
likely evolutionary history. We infer that this type of system, containing a
bloated hot white dwarf, is the direct descendant of an Algol-type binary. In
spite of this basic understanding of the origin of KOI 1224, we discuss a
number of problems associated with producing this type of system with this
short of an short orbital period.Comment: 14 pages, 8 figures, 2 tables, submitted to Ap
- …