73 research outputs found
Genetic homogenisation of two major orchid viruses through global tradeâbased dispersal of their hosts
Orchid viruses are capable of causing flower deformities and death, which can seâ verely impact the horticultural industry and wild orchid conservation. Here we show how two of these quickly evolving viruses display few genetic differences since their first emergence, across countries and host plants. This is concerning as, despite biosâ ecurity regulations to control the movement of orchids and their related pathogens, these patterns are suggestive of rapid and regular international movement of hortiâ cultural material. Poor biosecurity practices could threaten the orchid horticultural industry and result in the accidental translocation or reintroduction of infected plant material intended to recover wild populations
Multi-site benchmark classification of major depressive disorder using machine learning on cortical and subcortical measures
Machine learning (ML) techniques have gained popularity in the neuroimaging field due to their potential for classifying neuropsychiatric disorders. However, the diagnostic predictive power of the existing algorithms has been limited by small sample sizes, lack of representativeness, data leakage, and/or overfitting. Here, we overcome these limitations with the largest multi-site sample size to date (Nâ=â5365) to provide a generalizable ML classification benchmark of major depressive disorder (MDD) using shallow linear and non-linear models. Leveraging brain measures from standardized ENIGMA analysis pipelines in FreeSurfer, we were able to classify MDD versus healthy controls (HC) with a balanced accuracy of around 62%. But after harmonizing the data, e.g., using ComBat, the balanced accuracy dropped to approximately 52%. Accuracy results close to random chance levels were also observed in stratified groups according to age of onset, antidepressant use, number of episodes and sex. Future studies incorporating higher dimensional brain imaging/phenotype features, and/or using more advanced machine and deep learning methods may yield more encouraging prospects
Multi-Site Benchmark Classification of Major Depressive Disorder Using Machine Learning on Cortical and Subcortical Measures
Machine learning (ML) techniques have gained popularity in the neuroimaging field due to their potential for classifying neuropsychiatric disorders. However, the diagnostic predictive power of the existing algorithms has been limited by small sample sizes, lack of representativeness, data leakage, and/or overfitting. Here, we overcome these limitations with the largest multi-site sample size to date (Nâ=â5365) to provide a generalizable ML classification benchmark of major depressive disorder (MDD) using shallow linear and non-linear models. Leveraging brain measures from standardized ENIGMA analysis pipelines in FreeSurfer, we were able to classify MDD versus healthy controls (HC) with a balanced accuracy of around 62%. But after harmonizing the data, e.g., using ComBat, the balanced accuracy dropped to approximately 52%. Accuracy results close to random chance levels were also observed in stratified groups according to age of onset, antidepressant use, number of episodes and sex. Future studies incorporating higher dimensional brain imaging/phenotype features, and/or using more advanced machine and deep learning methods may yield more encouraging prospects
DenseNet and Support Vector Machine classifications of major depressive disorder using vertex-wise cortical features
Major depressive disorder (MDD) is a complex psychiatric disorder that
affects the lives of hundreds of millions of individuals around the globe. Even
today, researchers debate if morphological alterations in the brain are linked
to MDD, likely due to the heterogeneity of this disorder. The application of
deep learning tools to neuroimaging data, capable of capturing complex
non-linear patterns, has the potential to provide diagnostic and predictive
biomarkers for MDD. However, previous attempts to demarcate MDD patients and
healthy controls (HC) based on segmented cortical features via linear machine
learning approaches have reported low accuracies. In this study, we used
globally representative data from the ENIGMA-MDD working group containing an
extensive sample of people with MDD (N=2,772) and HC (N=4,240), which allows a
comprehensive analysis with generalizable results. Based on the hypothesis that
integration of vertex-wise cortical features can improve classification
performance, we evaluated the classification of a DenseNet and a Support Vector
Machine (SVM), with the expectation that the former would outperform the
latter. As we analyzed a multi-site sample, we additionally applied the ComBat
harmonization tool to remove potential nuisance effects of site. We found that
both classifiers exhibited close to chance performance (balanced accuracy
DenseNet: 51%; SVM: 53%), when estimated on unseen sites. Slightly higher
classification performance (balanced accuracy DenseNet: 58%; SVM: 55%) was
found when the cross-validation folds contained subjects from all sites,
indicating site effect. In conclusion, the integration of vertex-wise
morphometric features and the use of the non-linear classifier did not lead to
the differentiability between MDD and HC. Our results support the notion that
MDD classification on this combination of features and classifiers is
unfeasible
Anxiety and Depression in Adults with Autism Spectrum Disorder: A Systematic Review and Meta-analysis
Adults with autism spectrum disorder (ASD) are thought to be at disproportionate risk of developing mental health comorbidities, with anxiety and depression being considered most prominent amongst these. Yet, no systematic review has been carried out to date to examine rates of both anxiety and depression focusing specifically on adults with ASD. This systematic review and meta-analysis examined the rates of anxiety and depression in adults with ASD and the impact of factors such as assessment methods and presence of comorbid intellectual disability (ID) diagnosis on estimated prevalence rates. Electronic database searches for studies published between January 2000 and September 2017 identified a total of 35 studies, including 30 studies measuring anxiety (n = 26 070; mean age = 30.9, s.d. = 6.2 years) and 29 studies measuring depression (n = 26 117; mean age = 31.1, s.d. = 6.8 years). The pooled estimation of current and lifetime prevalence for adults with ASD were 27% and 42% for any anxiety disorder, and 23% and 37% for depressive disorder. Further analyses revealed that the use of questionnaire measures and the presence of ID may significantly influence estimates of prevalence. The current literature suffers from a high degree of heterogeneity in study method and an overreliance on clinical samples. These results highlight the importance of community-based studies and the identification and inclusion of well-characterized samples to reduce heterogeneity and bias in estimates of prevalence for comorbidity in adults with ASD and other populations with complex psychiatric presentations
Nociceptors: a phylogenetic view
The ability to react to environmental change is crucial for the survival of an organism and an essential prerequisite is the capacity to detect and respond to aversive stimuli. The importance of having an inbuilt âdetect and protectâ system is illustrated by the fact that most animals have dedicated sensory afferents which respond to noxious stimuli called nociceptors. Should injury occur there is often sensitization, whereby increased nociceptor sensitivity and/or plasticity of nociceptor-related neural circuits acts as a protection mechanism for the afflicted body part. Studying nociception and nociceptors in different model organisms has demonstrated that there are similarities from invertebrates right through to humans. The development of technology to genetically manipulate organisms, especially mice, has led to an understanding of some of the key molecular players in nociceptor function. This review will focus on what is known about nociceptors throughout the Animalia kingdom and what similarities exist across phyla; especially at the molecular level of ion channels
Virtual Ontogeny of Cortical Growth Preceding Mental Illness
Background: Morphology of the human cerebral cortex differs across psychiatric disorders, with neurobiology and developmental origins mostly undetermined. Deviations in the tangential growth of the cerebral cortex during pre/perinatal periods may be reflected in individual variations in cortical surface area later in life. Methods: Interregional profiles of group differences in surface area between cases and controls were generated using T1-weighted magnetic resonance imaging from 27,359 individuals including those with attention-deficit/hyperactivity disorder, autism spectrum disorder, bipolar disorder, major depressive disorder, schizophrenia, and high general psychopathology (through the Child Behavior Checklist). Similarity of interregional profiles of group differences in surface area and prenatal cell-specific gene expression was assessed. Results: Across the 11 cortical regions, group differences in cortical area for attention-deficit/hyperactivity disorder, schizophrenia, and Child Behavior Checklist were dominant in multimodal association cortices. The same interregional profiles were also associated with interregional profiles of (prenatal) gene expression specific to proliferative cells, namely radial glia and intermediate progenitor cells (greater expression, larger difference), as well as differentiated cells, namely excitatory neurons and endothelial and mural cells (greater expression, smaller difference). Finally, these cell types were implicated in known pre/perinatal risk factors for psychosis. Genes coexpressed with radial glia were enriched with genes implicated in congenital abnormalities, birth weight, hypoxia, and starvation. Genes coexpressed with endothelial and mural genes were enriched with genes associated with maternal hypertension and preterm birth. Conclusions: Our findings support a neurodevelopmental model of vulnerability to mental illness whereby prenatal risk factors acting through cell-specific processes lead to deviations from typical brain development during pregnancy
Recommended from our members
Multi-site benchmark classification of major depressive disorder using machine learning on cortical and subcortical measures
Machine learning (ML) techniques have gained popularity in the neuroimaging field due to their potential for classifying neuropsychiatric disorders. However, the diagnostic predictive power of the existing algorithms has been limited by small sample sizes, lack of representativeness, data leakage, and/or overfitting. Here, we overcome these limitations with the largest multi-site sample size to date (Nâ=â5365) to provide a generalizable ML classification benchmark of major depressive disorder (MDD) using shallow linear and non-linear models. Leveraging brain measures from standardized ENIGMA analysis pipelines in FreeSurfer, we were able to classify MDD versus healthy controls (HC) with a balanced accuracy of around 62%. But after harmonizing the data, e.g., using ComBat, the balanced accuracy dropped to approximately 52%. Accuracy results close to random chance levels were also observed in stratified groups according to age of onset, antidepressant use, number of episodes and sex. Future studies incorporating higher dimensional brain imaging/phenotype features, and/or using more advanced machine and deep learning methods may yield more encouraging prospects
- âŠ