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1  | INTRODUC TION

With an estimated 28,484 species (WCSP, 2017), orchids are among 
the most speciose families of flowering plants (Joppa, Roberts, 
Myers, & Pimm, 2011). One of their most outstanding features is 
their diversity in floral form, resulting in a sizeable international hor‐
ticultural industry where orchids consistently appear among the top 
horticultural commodities in terms of pot plants (Hinsley et al., 2017; 
Royal Flora Holland, 2015; United States Department of Agriculture, 
2016), as well as comprise approximately 10% of the cut flower in‐
dustry (De, Pathak, Rao, & Rajeevan, 2015; Hinsley et al., 2017). 
However, orchid viruses significantly affect flower quality and 
yield, and have the potential to cause substantial economic losses 
(Khentry, Paradornuwat, Tantiwiwat, Phansiri, & Thaveechai, 2006; 
Wong, Chng, Lee, Tan, & Zettler, 1994). Whilst more than 50 dif‐
ferent viruses have been documented to infect orchids, Cymbidium 
mosaic virus (CymMV) and Odontoglossum ringspot virus (ORSV) 
are the most prevalent (Wong et al., 1994; Zettler, Ko, Wisler, Elliott, 
& Wong, 1990). Both viruses have a global distribution in cultivated 

orchids, though their presence in natural populations is currently un‐
known (Umikalsum, Bakar, Khairun, & Faridah, 2006; Zettler et al., 
1990).

CymMV is a member of the potexvirus family with a single‐
stranded RNA (ssRNA) positive sense genome of approximately 
6.3  kb (Wong et al., 1997). Signs of disease include flower necro‐
sis, chlorotic or necrotic patches on the leaves, and growth retar‐
dation (Ajjikuttira et al., 2002; Pearson & Cole, 1991; Zettler et al., 
1990), though asymptomatic hosts can occur (Ajjikuttira et al., 2002; 
Zettler et al., 1990). Although the virus appears not to have a natural 
vector for transmission (Namba & Ishii, 1971), it is stable and easily 
spread through contaminated horticultural tools, media, and pollen 
(Lawson & Brannigan, 1986; Moraes, Krause‐Sakate, & Pavan, 2017). 
ORSV, a tobamovirus, also has a positive sense ssRNA genome of 
around 6.5 kb (Chng et al., 1996). ORSV infection can result in flower 
malformation and color breaking, and ringspots on the leaves. As 
with CymMV, the transmission of ORSV appears to be by means of 
mechanical inoculation (Cánovas, Ballari, & Nome, 2016; Hu et al., 
1994; Zettler et al., 1990).
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Whilst both of these viruses are currently only known from cul‐
tivated stock or domestic orchid collections, to date little emphasis 
has been placed on the dangers of viral spill‐over into wild orchid 
populations through activities such as reintroduction and, conse‐
quently, what impacts this may have on biodiversity loss. We are 
aware of only a single study from Australia, in which several exotic 
viruses were described from wild Diuris orchid populations (Wylie, 
Li, Dixon, Richards, & Jones, 2013). The global spread of pathogens 
poses an increasing threat to biodiversity (Daszak, Cunningham, & 
Hyatt, 2000) and has been linked to the collapse of a number of 
wild populations and multiple species extinctions (Anderson et al., 
2004). Most orchids are naturally rare and threatened with extinc‐
tion through habitat loss and over‐collection from the wild (Roberts 
& Dixon, 2008). For example, Paphiopedilum vietnamense was de‐
scribed new to science in 1999 only to be declared extinct in the 
wild five years later through over‐collection for the horticultural 
trade (Averyanov, 2004). Due to the threat from trade, all orchids 
were placed on Appendix II, or higher, from the inception of the 
Convention on International Trade in Endangered Species (CITES) 
(Koopowitz, 2001; Roberts & Solow, 2008), and currently comprises 
over 70% of species listed on CITES (Hinsley et al., 2017). Within the 
orchid horticultural community there is a level of resentment toward 
CITES, as it is perceived to negatively impact on trade by restrict‐
ing access and inhibiting the flow of plant material into the hobby 
(Hinsley et al., 2017; Koopowitz, 2001; Zelenko, 2005; Roberts pers. 
obs.). Along with national phytosanitary regulations, these regula‐
tions have the potential to limit the spread of orchid viruses across 
international borders by potentially reducing the movement of their 
hosts. However, phytosanitary certificates are not always required, 
as in the case of free movement of materials within economic unions 
such as the European Union (European Commission, 2000), and in 
some cases infected but asymptomatic plant material (Khentry et al., 
2006) may be transported if prior screening is not carried out.

Here we investigate the molecular evolution of the two most 
prevalent orchid viruses, CymMV and ORSV, using datasets repre‐
senting their global distribution in cultivated stock. We ask whether 
the considerable international trade of cultivated orchids has effec‐
tively “homogenised” the genetic diversity of the viruses or if their 
high mutation rate, as expected for RNA viruses (Duffy, Shackelton, 
& Holmes, 2008), and regulations on international movement has led 
to geographical and/or chronological differentiation.

2  | MATERIAL S AND METHODS

2.1 | Sampling and data analyses

All available nucleotide sequence data for the capsid protein of 
CymMV and ORSV were obtained from the Genbank database 
(Accessed 8 January 2018), along with any associated data regard‐
ing host species from which they were isolated and sampling date 
where available (n = 211 for CymMV, Table S1, and n = 146 for ORSV, 
Table S2). Both viral isolate datasets were dominated by four host 

genera (62% for CymMV and 74% for ORSV), with Cymbidium being 
the most prevalent (28% and 30% respectively).

Geneious 8.1.7 (Kearse et al., 2012) DNA editing software was 
used to align and edit all DNA sequences. The programme jMod‐
elTest 2.1.7 (Posada, 2008) was used to infer the best fit nucleotide 
substitution model across each dataset. A TN93 transition model 
(Tamura & Nei, 1993) with gamma distributed rate variation was 
favoured for CymMV and an HKY85 transition and transversion 
model (Hasegawa, Kishino, & Yano, 1985) was favoured for ORSV. 
Evolutionary rates were determined using the programme Beast 
v1.8.2 (Drummond, Suchard, Xie, & Rambaut, 2012) using only those 
sequences available with a confirmed associated year of sampling 
(n = 116 for CymMV and n = 101 for ORSV). The Bayesian skyline 
coalescent demographic prior was used as it allows for temporal 
changes in population size (Drummond, Rambaut, Shapiro, & Pybus, 
2005). Tracer v1.6 was used to ensure thorough model mixing and 
that a reasonable effective sample size (ESS > 200) had been reached 
for all parameters. Two runs, each consisting of ten independent 
Monte Carlo‐Markov chains (MCMC) were implemented for 100 mil‐
lion generations each, with trees sampled every 10,000 generations. 
The evolutionary rate and time to most recent common ancestor 
(TMRCA) were estimated under an uncorrelated relaxed molecular 
clock (Drummond, Ho, Phillips, & Rambaut, 2006; Lemey, Suchard, 
& Rambaut, 2009). LogCombiner v1.8.2 was used to combine runs, 
TreeAnnotator v1.8.2 was used to obtain the tree with the highest 
clade credibility (Drummond et al., 2012) and FigTree v1.4.2 was 
then used to visualise and edit the consensus tree (Rambaut, 2009). 
Additionally, for greater analytical strength, maximum‐likelihood 
(ML) phylogenies with 1,000 bootstrap replicates were generated 
for both genes to infer geographic relationships between all avail‐
able sequences using PhyML 3.0 (Guindon et al., 2010). GENEIOUS 
v8.1.7 (Kearse et al., 2012) was used to generate the consensus tree 
prior to visualisation and editing in FigTree.

3  | RESULTS

Figure 1 shows the ML phylogeny of the CymMV capsid protein 
sequences depicting their biogeographic association. The tree com‐
prises isolates from 29 host genera across 16 different countries 
or overseas territories, with numerous small clades displaying lit‐
tle apparent geographical or host genus pattern to their clustering. 
The Chinese and South Korean isolates, which are particularly well 
represented in this study, form several distinct groups indicating the 
presence of multiple viral genotypes within these regions. The rate 
of evolution calculated in the Bayesian analysis conducted over the 
dated subset of isolates (Figure S1) was determined to be 1.58 × 10−3 
(95% HPD 7.32 × 10−4–2.60 × 10−3) substitutions per site (Table 1). 
The TMRCA was determined to be 43.24 (95% HPD 15.86–75.58) 
years before the most recent confirmed sampling event in 2015 
(Table 1). Whilst, the clades in the Bayesian phylogeny appear to 
have slightly more structure with regards to their geographic origin 
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than with the ML tree, the analysis similarly suggests no host speci‐
ficity (Figure S1).

Figure 2 shows the ML phylogeny of the ORSV capsid pro‐
tein sequences comprising sequences isolated from 12 host gen‐
era across 14 countries. As with CymMV, both South Korean and 
Chinese isolates are highly represented in this dataset and lit‐
tle geographical, or host genus clustering is observed. The rate 
of evolution calculated in the Bayesian analysis conducted over 

the dated subset of isolates (Figure S2) was determined to be 
1.93 × 10−3 (95% HPD 1.17 × 10−3–2.72 × 10−3) substitutions per 
site (Table 1). The ORSV TMRCA was determined to be 21.92 
(95% HPD 21.01–23.41) years before the most recent confirmed 
sampling event in 2015 (Table 1). The Bayesian analysis has clus‐
tered the majority of South Korean isolates into four monophyletic 
clades but there was still no evidence of host specificity amongst 
sequences (Figure S2).

F I G U R E  1   Maximum likelihood phylogenetic tree denoting relationships between Cymbidium mosaic virus (CymMV) capsid protein 
sequences obtained from cultivated orchid hosts. Branches are labeled according to host genus and colored according to bootstrap support. 
Labels are colored according to country of sampling, as denoted in the key
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TA B L E  1   Estimated substitution rate and TMRCA (along with their 95% HPD intervals) of the capsid protein of CymMV and ORSV 
inferred from an uncorrelated relaxed clock model

Virus
Marginal 
Likelihood

Mean substitution  
rate (site/ year)

95% lower 
HPD interval

95% upper 
HPD interval

TMRCA 
(years)

95% lower 
HPD interval 
(TMRCA)

95% upper HPD 
interval (TMRCA)

CymMV −3,902.52 1.58 × 10−3 7.32 × 10−4 2.60 × 10−3 43.24 15.86 75.58

ORSV −1,261.73 1.93 × 10−3 1.17 × 10−3 2.72 × 10−3 21.92 21.01 23.41



     |  359FOGELL et al.

4  | DISCUSSION

This study suggests that there is little geographical and temporal dif‐
ferentiation in global isolates of two of the most prevalent orchid 
viruses, CymMV and ORSV. There is also no indication that different 
genotypes of these viruses infect particular host species. This is in 
line with previous studies (Ajjikuttira et al., 2002; Moles, Delatte, 
Farreyrol, & Grisoni, 2007; Moraes et al., 2017) and suggests that 
there has been significant global transmission of these viruses. 
While acknowledging that only a partial fragment of the genome has 
been analyzed to determine the TMRCA, and that all but three of 
the sequences with confirmed sampling dates were obtained within 
a decade of the 2017 limit of this study (Table S1, S2), both viruses 
appear to have ancestral genotypes that originated within the last 
50 years. This finding is in line with the period of mass expansion of 
trade in ex situ propagated orchids.

Our analyses date the CymMV common ancestor to around 1972 
(95% HPD 1939–1999), while the date for ORSV is much younger at 
around 1993 (95% HPD 1992–1994). The broader confidence inter‐
vals surrounding the TMRCA for CymMV is likely due to a higher 
proportion of isolates from more diverse geographic regions, as op‐
posed to the heavily biased ORSV dataset comprising predominantly 
Chinese and South Korean isolates used in the Bayesian analyses 
(Figures 1, 2 and S1, S2). While the early history of orchid cultiva‐
tion up until the early 1900s is well‐known (see Reinikka & Romero, 
1995), little has been documented regarding the expansion of and 
changes within the industry over the last 50 years. As such, under‐
standing the significance of the TMRCA for both viruses, as it relates 
to the orchid industry, is problematic. However, according to Motes 
(pers. commun.), the cloning of orchids, beginning in the 1950s, 
was a well‐established technique by the 1970s. Many older plants 
were used in mass production through these micropropagation 

F I G U R E  2   Maximum likelihood phylogenetic tree denoting relationships between Odontoglossum ringspot virus (ORSV) capsid protein 
sequences obtained from cultivated orchid hosts. Branches are labeled according to host genus and colored according to bootstrap support. 
Labels are colored according to country of sampling, as denoted in the key
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techniques, some of which are likely to have carried viruses. During 
the 1970s, Singapore, Malaysia, Thailand, Hawaii, California, and 
the Netherlands were rapidly expanding their orchid sectors, par‐
ticularly for the cut flower industry. As expected in a host‐pathogen 
system, the frequency of contact to facilitate pathogen transmission 
and, therefore, the probability and persistence of infection increases 
when the host population reaches high densities (Lloyd‐Smith et al., 
2005).

The early 1990s, corresponding with the TMRCA of ORSV, saw 
the advent of mass production of Phalaenopsis, one of the most 
widespread orchid genera in the industry (Hinsley et al., 2017; Motes 
pers. commun.). After the controversy surrounding the use of the 
fungicide Benlate, that devastated the foliage growers in Florida 
and Hawaii (Geyelin, 2001; Motes pers. commun.), horticulturalists 
looked to new crops. This came at a time when the Taiwanese gov‐
ernment were subsidising the growth in Phalaenopsis production and 
became the source of much of the stock for the United States and, 
potentially, growers in other regions such as Europe (Motes pers. 
commun.). This also saw the decline in then small growers, with the 
monopolisation of the industry by large horticultural corporations 
(Motes pers. commun.).

At approximately 10−3 substitutions per site per year we esti‐
mated very high evolutionary rates for both viruses, but well within 
that estimated for other RNA viruses of 10−5 and 10−2 substitutions 
per site per year (Duffy et al., 2008). Whilst we have only analyzed 
a portion of both genomes (~10%), studies of other positive sense 
ssRNA plant viruses also document evolutionary rates very similar to 
those we have estimated here for CymMV and ORSV (e.g. Fargette 
et al., 2006; Wu et al., 2011). This high evolutionary rate may be ex‐
pected to result in divergence over time and geographic distribution, 
particularly in light of the restrictions on international trade imposed 
by national phytosanitary regulation and CITES. Even within the rel‐
atively short period estimated for the emergence of these viruses, 
we would have expected to see some evidence of geographically 
specific divergence within isolated populations. However, the phy‐
logenetic patterns seen in Figures 1 and 2 suggests that the rate 
of dispersal of these viruses is high enough to result in any new 
variation being spread rapidly through the global distribution of cul‐
tivated orchids. Indeed, it is clear from our results that numerous 
introductions of both of these viruses have occurred globally. We 
frequently observe close phylogenetic relationships between iso‐
lates obtained from geographically distinct regions. For example, the 
well supported clade of CymMV isolates obtained from 12 different 
genera across eight countries (Figure 1). This rapid viral transmission 
is aided in part by their stability (Hu et al., 1994), ease of transmission 
through contaminated horticultural tools and media, and the pres‐
ence of asymptomatic infections (Ajjikuttira et al., 2002). However, 
this is probably not enough to cause the global genetic homogenisa‐
tion that we observe.

In a previous study of 85 viral isolates Moles et al. (2007) showed 
the presence of two sub‐groups of CymMV. With the substantial 
increase in data (both in terms of the number of isolates and the 
geographical, temporal and host species coverage) our study has 

identified the presence of additional sub‐groups (Figure 1), but 
with little differentiation based on geographic origin or host. The 
observed homogenisation is remarkable given the apparent lack 
of a known natural vector. Interestingly, this has occurred despite 
stricter international trade regulations for orchids under CITES, and 
phytosanitary regulations enforced by many countries (Khentry et 
al., 2006; Lawson & Brannigan, 1986). As CITES aims to ensure that 
the international trade in wild animals and plants does not threaten 
their survival, it does not act primarily as a means to enforce phy‐
tosanitary regulation and biosecurity. However, it does represent 
a significant constriction on the movement of plant material across 
international borders (Koopowitz, 2001; Roberts & Solow, 2008; 
Zelenko, 2005). Even so, the level of restriction on the movement 
of material caused by CITES does not appear to have resulted in any 
geographic separation of either virus. Homogenisation is only likely 
to increase further with the changes to CITES regulations which now 
allow the movement of large consignments of specific orchid hybrids 
from Cymbidium, Dendrobium, Miltonia, Odontoglossum, Oncidium, 
Phalaenopsis and Vanda without the need for CITES permits (see 
CITES, 2007).

Charles Darwin once speculated that “… the great grandchil-
dren of a single [orchid] plant would nearly … clothe with one uniform 
green carpet the entire surface of the land throughout the globe”, and 
noted “minute seeds within their light coats are well fitted for wide 
dissemination…” (Darwin, 1862). While the multi‐billion‐dollar in‐
ternational trade in orchids has certainly helped disperse orchids 
through the horticultural community, it has also dispersed their 
associated viruses, resulting in a homogenised, or rather “uniform… 
carpet” of CymMV and ORSV. While regulations are in place, such 
as plant health certification, that should, and others that could 
(i.e. CITES), potentially limit the dispersal of the virus, this clearly 
does not seem to be the case. It is also possible for virus‐free plant 
material stocks for propagation and export to be readily gener‐
ated with the application of heat and chemical treatments (Lim, 
Wong, & Goh, 1993; Wylie et al., 2013). The rapid global disper‐
sal of viruses not only has the potential to impact this lucrative 
horticultural industry, it also threatens orchid species in the wild 
through poor biosecurity practices resulting in the reintroduction 
of infected stock or management of wild populations with infected 
horticultural tools.
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