3,918 research outputs found

    Micro & strong lensing with the Square Kilometer Array: The mass--function of compact objects in high--redshift galaxies

    Get PDF
    We present the results from recent VLA 8.5-GHz and WSRT 1.4 and 4.9-GHz monitoring campaigns of the CLASS gravitational lens B1600+434 and show how the observed variations argue strongly in favor of microlensing by MACHOs in the halo of a dark-matter dominated edge-on disk galaxy at z=0.4. The population of flat-spectrum radio sources with micro-Jy flux-densities detected with the Square-Kilometer-Array is expected to have dimensions of micro-arcsec. They will therefore vary rapidly as a result of Galactic scintillation (diffractive and refractive). However, when positioned behind distant galaxies they will also show variations due to microlensing, even more strongly than in the case of B1600+434. Relativistic or superluminal motion in these background sources typically leads to temporal variations on time scales of days to weeks. Scintillation and microlensing can be distinguished, and separated, by their different characteristic time scales and the frequency dependence of their modulations. Monitoring studies with Square-Kilometer-Array at GHz frequencies will thus probe both microscopic and macroscopic properties of dark matter and its mass-function as a function of redshift, information very hard to obtain by any other method.Comment: 8 pages, 5 figures, to appear in Perspectives in Radio Astronomy: Scientific Imperatives at cm and m Wavelengths (Dwingeloo: NFRA), Edited by: M.P. van Haarlem & J.M. van der Huls

    The application of NASTRAN at Sperry Univac Holland

    Get PDF
    Very divergent problems arising with different calculations indicate that NASTRAN is not always accessible for common use. Problems with engineering, modelling, and use of the program system are analysed and a way of solution is outlined. Related to this, some supplementary modifications are made at Sperry Univac Holland to facilitate the program for the less skilled user. The implementation of a new element also gives an insight into the use of NASTRAN at Sperry Univac Holland. As the users of Univac computers are from very different kinds of industries like shipbuilders, petrochemical industries, and building industries, the variety of problems coming from these users is very large. This variety results in experience not with one special kind of calculation nor one special kind of construction, but with a wide area of problems arising in the use of NASTRAN. These problems can roughly be divided into three different groups: (1) recognition of what is to be calculated and how, (2) construction of a model, and (3) handling the NASTRAN program. These are the basic problems for every less skilled user of NASTRAN and the Application/Research Department of Sperry Univac has to give reasonable answers to these questions

    A time-delay determination from VLA light curves of the CLASS gravitational lens B1600+434

    Get PDF
    We present Very Large Array (VLA) 8.5-GHz light curves of the two lens images of the Cosmic Lens All Sky Survey (CLASS) gravitational lens B1600+434. We find a nearly linear decrease of 18-19% in the flux densities of both lens images over a period of eight months (February-October) in 1998. Additionally, the brightest image A shows modulations up to 11% peak-to-peak on scales of days to weeks over a large part of the observing period. Image B varies significantly less on this time scale. We conclude that most of the short-term variability in image A is not intrinsic source variability, but is most likely caused by microlensing in the lens galaxy. The alternative, scintillation by the ionized Galactic ISM, is shown to be implausible based on its strong opposite frequency dependent behavior compared with results from multi-frequency WSRT monitoring observations (Koopmans & de Bruyn 1999). From these VLA light curves we determine a median time delay between the lens images of 47^{+5}_{-6} d (68%) or 47^{+12}_{-9} d (95%). We use two different methods to derive the time delay; both give the same result within the errors. We estimate an additional systematic error between -8 and +7 d. If the mass distribution of lens galaxy can be described by an isothermal model (Koopmans, de Bruyn & Jackson 1998), this time delay would give a value for the Hubble parameter, H_0=57^{+14}_{-11} (95% statistical) ^{+26}_{-15} (systematic) km/s/Mpc (Omega_m=1 and Omega_Lambda=0). Similarly, the Modified-Hubble-Profile mass model would give H_0=74^{+18}_{-15} (95% statistical) ^{+22}_{-22} (systematic) km/s/Mpc. For Omega_m=0.3 and Omega_Lambda=0.7, these values increase by 5.4%. ... (ABRIDGED)Comment: 14 pages, 6 figures, accepted for publication in Astronomy & Astrophysics (Figs 1 and 3 with degraded resolution

    The efficacy of prolonged release oxycodone/naloxone for the treatment of Opioid Induced Constipation; from clinical trial to daily practice

    Get PDF
    Over the years opioid receptor antagonists like methylnaltrexone, naloxegol and naloxone are increasingly being used for the pathophysiological treatment of opioid induced constipation (OIC). The efficacy of laxative treatment and pathophysiological treatment with a prolonged release combination of oxycodone/naloxone (PR OXN) in daily practice is not clear. With this thesis we aimed to gain insights in the efficacy PR OXN treatment for OIC, with a focus on patients with laxative refractory OIC. Moreover, since data are lacking on the efficacy of the current Dutch laxative regime a pilot study was performed aiming to obtain insights in the efficacy of the current Dutch laxative regime in daily practice. Also, a systematic review was performed to gain insights on the current clinical and observational study evidence of the efficacy of peripherally acting mu-opioid receptor antagonists (PAMORAs) and PR OXN. Finally, a cost-utility analysis was performed for PR OXN use in patients with non-malignant moderate-to-severe pain, who are eligible for opioid treatment to obtain adequate analgesia and are experiencing laxative-refractory OIC

    Hierarchical Bayesian inference of the Initial Mass Function in Composite Stellar Populations

    Get PDF
    The initial mass function (IMF) is a key ingredient in many studies of galaxy formation and evolution. Although the IMF is often assumed to be universal, there is continuing evidence that it is not universal. Spectroscopic studies that derive the IMF of the unresolved stellar populations of a galaxy often assume that this spectrum can be described by a single stellar population (SSP). To alleviate these limitations, in this paper we have developed a unique hierarchical Bayesian framework for modelling composite stellar populations (CSPs). Within this framework we use a parameterized IMF prior to regulate a direct inference of the IMF. We use this new framework to determine the number of SSPs that is required to fit a set of realistic CSP mock spectra. The CSP mock spectra that we use are based on semi-analytic models and have an IMF that varies as a function of stellar velocity dispersion of the galaxy. Our results suggest that using a single SSP biases the determination of the IMF slope to a higher value than the true slope, although the trend with stellar velocity dispersion is overall recovered. If we include more SSPs in the fit, the Bayesian evidence increases significantly and the inferred IMF slopes of our mock spectra converge, within the errors, to their true values. Most of the bias is already removed by using two SSPs instead of one. We show that we can reconstruct the variable IMF of our mock spectra for signal-to-noise ratios exceeding \sim75.Comment: Accepted for publication in MNRAS, 16 pages, 8 figure

    The Fundamental Surface of Quad Lenses

    Full text link
    In a quadruply imaged lens system the angular distribution of images around the lens center is completely described by three relative angles. We show empirically that in the 3D space of these angles, spanning 180 x 180 x 90 degrees, quads from simple two-fold symmetric lenses of arbitrary radial density profile and arbitrary radially dependent ellipticity or external shear define a nearly invariant 2D surface. We give a fitting formula for the surface using SIS+elliptical lensing potential. Various circularly symmetric mass distributions with shear up to 0.4 deviate from it by typically, rms~0.1 deg, while elliptical mass distributions with ellipticity of up 0.4 deviate from it by rms~1.5 deg. The existence of a near invariant surface gives a new insight into the lensing theory and provides a framework for studying quads. It also allows one to gain information about the lens mass distribution from the image positions alone, without any recourse to mass modeling. As an illustration, we show that about 3/4 of observed galaxy-lens quads do not belong to this surface within observational error, and so require additional external shear or substructure to be modeled adequately.Comment: 24 pages, 9 figures, accepted to MNRA

    Measuring gravitational lens time delays using low-resolution radio monitoring observations

    Get PDF
    Obtaining lensing time delay measurements requires long-term monitoring campaigns with a high enough resolution (< 1 arcsec) to separate the multiple images. In the radio, a limited number of high-resolution interferometer arrays make these observations difficult to schedule. To overcome this problem, we propose a technique for measuring gravitational time delays which relies on monitoring the total flux density with low-resolution but high-sensitivity radio telescopes to follow the variation of the brighter image. This is then used to trigger high-resolution observations in optimal numbers which then reveal the variation in the fainter image. We present simulations to assess the efficiency of this method together with a pilot project observing radio lens systems with the Westerbork Synthesis Radio Telescope (WSRT) to trigger Very Large Array (VLA) observations. This new method is promising for measuring time delays because it uses relatively small amounts of time on high-resolution telescopes. This will be important because instruments that have high sensitivity but limited resolution, together with an optimum usage of followup high-resolution observations from appropriate radio telescopes may in the future be useful for gravitational lensing time delay measurements by means of this new method.Comment: 10 pages, 7 figures, accepted by MNRA

    The very knotty lenser: Exploring the role of regularization in source and potential reconstructions using Gaussian process regression

    Get PDF
    Reconstructing lens potentials and lensed sources can easily become an underconstrained problem, even when the degrees of freedom are low, due to degeneracies, particularly when potential perturbations superimposed on a smooth lens are included. Regularization has traditionally been used to constrain the solutions where the data failed to do so, e.g. in unlensed parts of the source. In this exploratory work, we go beyond the usual choices of regularization and adopt observationally motivated priors for the source brightness. We also perform a similar comparison when reconstructing lens potential perturbations, which are assumed to be stationary, i.e. permeate the entire field of view. We find that physically motivated priors lead to lower residuals, avoid overfitting, and are decisively preferred within a Bayesian quantitative framework in all the examples considered. For the perturbations, choosing the wrong regularization can have a detrimental effect that even high-quality data cannot correct for, while using a purely smooth lens model can absorb them to a very high degree and lead to biased solutions. Finally, our new implementation of the semi-linear inversion technique provides the first quantitative framework for measuring degeneracies between the source and the potential perturbations

    Testing Convolutional Neural Networks for finding strong gravitational lenses in KiDS

    Get PDF
    Convolutional Neural Networks (ConvNets) are one of the most promising methods for identifying strong gravitational lens candidates in survey data. We present two ConvNet lens-finders which we have trained with a dataset composed of real galaxies from the Kilo Degree Survey (KiDS) and simulated lensed sources. One ConvNet is trained with single \textit{r}-band galaxy images, hence basing the classification mostly on the morphology. While the other ConvNet is trained on \textit{g-r-i} composite images, relying mostly on colours and morphology. We have tested the ConvNet lens-finders on a sample of 21789 Luminous Red Galaxies (LRGs) selected from KiDS and we have analyzed and compared the results with our previous ConvNet lens-finder on the same sample. The new lens-finders achieve a higher accuracy and completeness in identifying gravitational lens candidates, especially the single-band ConvNet. Our analysis indicates that this is mainly due to improved simulations of the lensed sources. In particular, the single-band ConvNet can select a sample of lens candidates with 40%\sim40\% purity, retrieving 3 out of 4 of the confirmed gravitational lenses in the LRG sample. With this particular setup and limited human intervention, it will be possible to retrieve, in future surveys such as Euclid, a sample of lenses exceeding in size the total number of currently known gravitational lenses.Comment: 16 pages, 10 figures. Accepted for publication in MNRA
    corecore