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A B S T R A C T 

Reconstructing lens potentials and lensed sources can easily become an underconstrained problem, even when the degrees of 
freedom are low, due to degeneracies, particularly when potential perturbations superimposed on a smooth lens are included. 
Regularization has traditionally been used to constrain the solutions where the data failed to do so, e.g. in unlensed parts of the 
source. In this exploratory work, we go beyond the usual choices of regularization and adopt observ ationally moti v ated priors 
for the source brightness. We also perform a similar comparison when reconstructing lens potential perturbations, which are 
assumed to be stationary, i.e. permeate the entire field of view. We find that physically moti v ated priors lead to lower residuals, 
a v oid o v erfitting, and are decisiv ely preferred within a Bayesian quantitativ e framework in all the e xamples considered. F or 
the perturbations, choosing the wrong regularization can have a detrimental effect that even high-quality data cannot correct 
for, while using a purely smooth lens model can absorb them to a very high degree and lead to biased solutions. Finally, our 
new implementation of the semi-linear inversion technique provides the first quantitati ve frame work for measuring degeneracies 
between the source and the potential perturbations. 

Key words: gravitational lensing: strong. 

1

T
e
s  

K  

c
e
i
v  

g
o  

l
s
i
e

g
K
(  

‘  

(
c
o
e

�

fi  

m  

g  

u
e  

2  

&
 

t
l  

i  

m
(  

2  

O  

o  

e  

N  

&  

w  

Y  

(  

2  

m  

t

©
P

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/516/1/1347/6644880 by U
niversity of G

roningen user on 15 M
arch 2023
 I N T RO D U C T I O N  

he standard cosmological model, comprising the still unknown dark 
nergy and dark matter, has been successful in describing the large- 
cale structure of the Universe and its properties ( > 1 Mpc; e.g.
omatsu et al. 2011 ; Planck Collaboration VI 2020 ). The dark matter
omponent in particular, plays an important role throughout cosmic 
volution by participating in the collapse of baryons via gravitational 
nstability to form galaxies (White & Rees 1978 ). Verifying the 
alidity of the current Cold Dark Matter paradigm down to sub-
alactic scales, and what this implies for the microscopic properties 
f the dark matter particle, is masked by the onset of highly non-
inear physical mechanisms attributed to baryons, e.g. stellar winds, 
upernovae, feedback from Active Galactic Nuclei, etc, that appear 
n such high density environments (Vogelsberger et al. 2014 ; Schaye 
t al. 2015 ). 

The tension between dark matter theory and observations on 
alactic and sub-galactic scales ( < 1 Mpc; Bullock & Boylan- 
olchin 2017 ) has several manifestations, e.g. the ‘missing satellites’ 

Klypin, Kravtsov & Valenzuela 1999 ; Moore et al. 1999 ), the
cusp-core’ (Moore 1994 ; Oh et al. 2015 ), the ‘too-big-to-fail’
Boylan-Kolchin, Bullock & Kaplinghat 2011 ), and the ‘bulge-halo 
onspiracy’ (Dutton & Treu 2014 ) problems. Regardless of the role 
f baryons and their gravitational interactions with dark matter in 
ach case, aspects of which constitute independent major research 
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elds (e.g. the efficiency of star formation; McKee & Ostriker 2007 ),
easuring the o v erall shape and smoothness of the mass density in

alaxies is critical. In the local Universe, this can be achieved by
nderstanding the statistics (e.g. Papastergis et al. 2014 ), instrumental 
ffects (Kim, Peter & Hargis 2018 ), and dynamics (e.g. Helmi et al.
012 ) of dwarf galaxies and stellar streams (e.g. Carlberg, Grillmair
 Hetherington 2012 ; Erkal et al. 2016 ). 
As soon as one leaves the neighbourhood of the Milky Way,

he only way to achieve such measurements is via gravitational 
ensing – the deflection of light from a distant source by the
ntervening mass of a galaxy. In this way, the o v erall shape of the total

ass distribution has been measured for massive elliptical galaxies 
Koopmans et al. 2006 , 2009 ; Gavazzi et al. 2007 ; Auger et al.
010 ; Barnab ̀e et al. 2011 ; Sonnenfeld et al. 2013 ; Suyu et al. 2014 ;
ldham & Auger 2018 ) and massive substructures down to the order
f 10 8 M � have been detected out to cosmological distances (Vegetti
t al. 2010 , 2012 ; Fadely & Keeton 2012 ; MacLeod et al. 2013 ;
ierenberg et al. 2014 ; Hezaveh et al. 2016b ; Li et al. 2016 ; Birrer
 Amara 2017 ). Strong lensing analysis has also been combined
ith other techniques, e.g. stellar kinematics (Barnab ̀e et al. 2011 ;
ildirim, Suyu & Halkola 2020 ), stellar kinematics and weak lensing

Sonnenfeld et al. 2018 ), stellar population analysis (Barnabe et al.
013 ; Smith, Lucey & Conroy 2015 ; Spiniello et al. 2015 ), and quasar
icrolensing (Oguri, Rusu & Falco 2014 ), in order to disentangle

he baryonic and dark mass components. 
The gravitational imaging technique (Koopmans 2005 ; Vegetti & 

oopmans 2009 ) is a powerful method to study the non-smoothness
f the lensing mass distribution, analysing perturbations of lensing 
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mailto:georgios.vernardos@epfl.ch


1348 G. Vernardos and L. V. E. Koopmans 

M

f  

i  

t  

l  

t  

p  

p  

r  

u  

p  

n  

t  

p  

c  

o  

p  

t  

s
 

l  

s  

o  

m  

r  

2  

2  

a  

d  

p  

p  

p  

c  

w  

&  

r  

m  

a  

i  

d  

S  

e  

p  

a
 

p  

t  

a  

i  

t  

r  

f  

1

&
o
N
2

b
(
e
o
r

s  

p  

e  

p  

s  

p  

o  

c  

fi  

t  

s  

s  

r  

t  

m  

t  

d  

p  

b
 

n  

t  

c  

t  

i  

&  

q  

a  

p  

w  

b  

2  

o  

u  

v  

p  

f
 

t  

t  

(  

u  

o  

S

2

T  

s  

(  

s  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/516/1/1347/6644880 by U
niversity of G

roningen user on 15 M
arch 202
eatures, such as arcs and Einstein rings. 1 Based on the semi-linear
nversion method of Warren & Dye ( 2003 ), which can reconstruct
he light distribution of the lensed source on a grid once the
ensing potential is given, Koopmans ( 2005 ) provided an extension
hat simultaneously obtains a grid-based reconstruction of potential
erturbations to an o v erall smooth (parametric) lens potential: in the
resence of substructure, dark or luminous, the smooth modelling
esiduals are remodelled in terms of lens potential perturbations
sing the smooth potential and its corresponding source as a starting
oint. Vegetti & Koopmans ( 2009 ) improved this technique in a
umber of ways, expanding the work of Suyu et al. ( 2006 ) by casting
he problem in a Bayesian framework that includes the potential
erturbations and using an adaptive grid for the source. With careful
ontrol o v er the re gularization lev el of the solutions, the presence
f substructure in a lens can be unco v ered by accumulating small
otential corrections within an iterative scheme. The detection is
hen justified by comparing the Bayesian evidence to the best purely
mooth lensing model (Vegetti et al. 2010 ). 

The regularization scheme plays a critical role in such a strong
ensing Bayesian analysis approach, as it enables the matrix inver-
ions to find a unique solution (MacKay 1992 , 2003 ). Focusing only
n the reconstruction of the source, there are several pixel-based
ethods 2 that employ a brightness, gradient, or curvature based

egularization scheme, or a combination thereof (Dye & Warren
005 ; Suyu et al. 2006 ; Vegetti & Koopmans 2009 ; Tagore & Keeton
014 ; Nightingale & Dye 2015 ; Yildirim et al. 2020 ), i.e. they
ssume that each of these source properties is drawn from a normal
istribution, whose variance is determined by the regularization
arameter that itself can be optimized for, and whose correlation
roperties are set by a corresponding covariance matrix. However, a
oor choice of the regularization parameter in each case is known to
ause problems with o v er- and underfitting of the data in some cases,
hich in turn might affect the mass model parameters (Nightingale
 Dye 2015 ). Suyu et al. ( 2006 ) solve exactly for the value of the

egularization parameter that maximizes the e vidence. To allo w for
ore flexibility, Nightingale, Dye & Massey ( 2018 ) have introduced
 non-constant (adaptive) regularization scheme, whose principle
s to vary the strength of the regularization (width of the normal
istribution) across the source, based on its surface brightness profile.
ome form of regularization is necessary to be able to solve the
quations, ho we ver all of these methods are equi v alent to setting
riors for the different source properties that are not necessarily
strophysically moti v ated. 

Upon combining the source reconstruction with potential
erturbations, which enter the equations in a very similar way
o the source and require their own regularization scheme, an
dditional non-linear dependence of the perturbations on the source
s introduced (Koopmans 2005 ). Again, the regularization of the
wo fields, the source and the perturbations, plays an important
ole in reaching a unique solution. Vegetti & Koopmans ( 2009 )
ollow a line-search optimization, starting with finding the best
NRAS 516, 1347–1372 (2022) 

 This can also be achieved by analysing flux ratios from lensed quasars (Dalal 
 Kochanek 2002 ), ho we ver, this requires carefully planned spectroscopic 

bservations, taking into account the possible effect of microlensing (e.g. 
ierenberg et al. 2014 ). 
 The possibility of using basis sets to reconstruct the source has been explored 
y Birrer, Amara & Refregier ( 2015 ), Joseph et al. ( 2019 ), Galan et al. 
 2021 ) and the use of deep neural networks was investigated by Morningstar 
t al. ( 2019 ). Both methods do not e xplicitly require re gularization, but rely 
n the number of independent basis vectors and a descriptive training set, 
espectively, to model higher order statistics of the source. 
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mooth lens-mass model and then proceeding with calculating
otential corrections based on the corresponding source (see also
quation 3 here). In their iterative scheme, the source and potential
erturbations are solved for at each step and then updated: the new
urface brightness deri v ati ves are calculated across the source and the
erturbations are added to the o v erall smooth potential in the form
f corrections. The regularization parameter of the perturbations is
arefully controlled, initially set to very high values (very smooth
elds) and later reduced to allow for more structure. This is similar

o a Gauss–Newton optimization scheme that is known to be
ensitive to the step size; any spurious structure appearing in the
olutions would be added to the o v erall lensing potential with the
isk of irreco v erably drifting a way from the true solution. Although
his is a powerful approach, it is limited by two caveats: some
anual fine-tuning is needed in setting up the algorithm to converge

o a meaningful solution, and there is no obvious means to quantify
egeneracies between the reconstructed source and the potential
erturbations. The latter is inherent to the technique and has not
een studied in depth before (see Chatterjee 2019 , for an example). 

In this paper, we more rigorously investigate the importance of
ew forms of regularization, introducing more realistic priors on
he source surface brightness distribution that are more flexible in
apturing higher order statistical properties, and a statistical approach
o finding the best regularization parameters via sampling. The latter
s based on the theory of Gaussian Process Regression (Rasmussen
 Williams 2006 ) and is quite powerful as it provides a way to

uantify degeneracies between the source and perturbation fields. In
ddition, this sampling approach is better suited to describe extended
erturbations, which are not necessarily restricted to compact and
ell-localized perturbers that might be more accurately detected
y an iterative and additive scheme (as in Vegetti & Koopmans
009 ). The outcome is a statistical approach to generic perturbations
f a smooth lensing potential, which can be directly linked to the
nderlying statistical properties of baryonic and dark matter (e.g.
ia the power spectrum), or to higher order structure in the lens
otential, such as the presence of a galactic disc (as was recently
ound by Hsueh et al. 2017 ). 

The structure of the paper is as follows. In Section 2 we set up the
heoretical framework, provide the Bayesian evidence equation ex-
ending the work of Suyu et al. ( 2006 ) and Vegetti & Koopmans
 2009 ), and demonstrate the use of this approach under various reg-
larization schemes. Section 3 presents a set of selected applications
f the method on mock lens systems, which are discussed further in
ection 4 . Our conclusions are summarized in Section 5 . 

 M E T H O D  

he Bayesian formalism applied to grid-based strong lensing analy-
es was introduced by Suyu et al. ( 2006 ) and Vegetti & Koopmans
 2009 ). Here, we use the same framework and repeat some of the
teps, while we point out the differences, particularly with respect
o the regularization and our sampling approach. In addition, an
xplicit equation describing the Bayesian evidence is derived, which
as not appeared in the literature so far (Suyu et al. 2006 give such
n expression but including only the source). 

First, we formulate the problem in terms of a lensing operator
epending on a parametrized smooth lens potential and a source
rightness distribution defined on a grid, and then we introduce
otential perturbations. Solving the resulting equations directly is
n ill-posed problem. We therefore need to look for solutions min-
mizing some form of penalty function that includes regularization.
his leads to a set of linear equations with respect to the source and
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he potential perturbations that has an exact solution. The problem 

s then re-cast using a Bayesian formalism and the expression of
he evidence is derived. The general treatment is independent of any 
ssumption on the particular type of regularization, ho we ver, se veral
hysically moti v ated schemes are examined in more detail. Finally, 
e present our sampling approach that allows us to (1) compare 
ifferent choices of model components (e.g. the regularization 
cheme) based on their Bayesian evidence, and (2) for any given 
odel, obtain the probability distribution of all of its non-linear 

arameters and determine statistical uncertainties, systematic biases, 
nd degeneracies. 

.1 The lensing operator and the source grid 

he problem at hand is finding how the lensed images relate to the
rightness of the background source via gravitational lensing, and 
an be cast in the following way (similarly to Warren & Dye 2003 ;
oopmans 2005 ; Vegetti & Koopmans 2009 ): 

 = BL ( ψ) s + n , (1) 

here d and n are the vectors of brightness measurements (the ‘data’) 
nd the associated noise (the ‘noise’) of the image pixels, s is the
ector of the (unknown) source brightness (the ‘source’), B is the 
lurring operator that is linked to the point spread function (PSF),
nd L is the lensing operator that depends on the lensing potential ψ .
he data and noise vectors correspond to a rectangular M × N grid of
 d pixels in total on the image plane, which delineates the part of the
ixel array of the optical detector co v ering the lensed images. The
lurring operator ( N d × N d ) is assumed constant 3 and mimics the
ffect of the PSF; it acts on (blurs) the resulting image plane pixels
ith a fixed weighting scheme, after the source has been lensed. 
ssuming that the source can also be described by a pixelated grid
f N s pixels and arbitrary form on the source plane, then the lensing
perator ( N d × N s ) couples each data pixel position to the source grid
ia the lens equation (Vegetti & Koopmans 2009 ). This can introduce
ultiplicity because different image pixels can be associated with the 

ame source location, thus creating multiple images. Equation ( 1 ) is
 linear transformation between the image and source planes that 
epends on the gradient of the lensing potential ψ . We note that the
ensing potential is typically a non-linear function of the lens plane 
oordinates, x , and some parameters, η, that can vary in complexity. 

Once the positions of the data pixels are traced back to the
ource plane, they are matched to pixels on the source grid via
n interpolation scheme that guarantees the conservation of surface 
rightness (see fig. 1 in Koopmans 2005 ). The source grid can
av e an y arbitrary structure, e.g. fix ed or free-floating re gular grids,
rre gular, adaptiv e, etc. On a regular grid, bi-linear interpolation 
s sufficient, while higher order schemes could also be used (e.g. 
i-cubic, natural neighbour, etc). An irregular grid has a unique 
elaunay triangulation and a corresponding dual Voronoi tesselation, 
hose triangles and cells, respectively, can both be considered as 

ource ‘pixels’ (Gallier 2011 ). Data pixels that are cast back on to
he source plane land inside a Delaunay triangle and their value is
nterpolated linearly between the triangle’s vertices (the centres of 
he irregular Voronoi cells). Hence, the brightness values inside any 
uch triangle lie on a tilted plane defined by the values at the triangle
ertices. Barycentric coordinates are used to perform these triangular 
 The PSF can in fact vary for each pixel based on the spectral energy 
istribution of the source for that specific pixel, or due to atmospheric effects 
f we are dealing with ground-based observations. 

(  

t
a
b
a
a  
nterpolations, which is equi v alent to the procedure described in
egetti & Koopmans ( 2009 , figs 1 and 2). 
An irregular source grid can also be constructed randomly (e.g. 

ightingale & Dye 2015 ) or by a recipe designed to facilitate the
ource reconstruction. An example is a so-called adaptive grid that 
s reconstructed every time the lens potential ψ( η) changes. Here,
e create such adaptive grids by casting back one out of every n
n block of the data pixels, with 1 ≤ n < 6 (fixed throughout

he reconstruction). Alternative gridding techniques are known to 
ffect the ‘discreteness-noise’ in the computed Bayesian evidence 
nd χ2 terms (Tagore & Keeton 2014 ; Nightingale & Dye 2015 ).
o we v er, e xploring different grids is out of this paper’s scope and

eft for future impro v ements to our method. For very large values
f n the resulting grid will be too coarse to successfully describe a
etailed lensed image brightness distribution. For n = 1, there is no
eed for any interpolation as all the data pix els hav e been used to
reate the source grid ( N s = N d ). Ho we ver, in this case the system
f equations to solve is underconstrained and heavily relies on the
egularization (i.e. assumed prior on the source surface brightness). 

Applying this procedure for any given lens potential ψ( η) results
n a set of N s points on the source plane representing the positions
f the source brightness values s and a N d × N s operator L , whose
ows contain the interpolation weights on the source grid for each
ata pixel. The procedure is repeated each time the lens potential ψ 

hanges (Vegetti & Koopmans 2009 ). 

.2 Lens potential corrections 

ften, an elliptical power-law mass model is assumed for the lens
Kassiola & Kovner 1993 ; Barkana 1998 ). Ho we ver, such smooth
ens potential models may well be too simplified to capture more
etailed structure of real lenses. Deviations from smoothness could 
e the result of dark matter substructure or higher order moments in
he mass distribution of the lens galaxy itself, originating from its

orphology (e.g. Hsueh et al. 2017 , find a non-negligible disc com-
onent) or evolution history (e.g. mergers). If such deviations exist 
n an observed system, they will manifest themselves as residuals, 
d , left behind after modelling the lens with a smooth potential: 

d = M s p − d , (2) 

here M ≡ M( η) = BL ( η), and s p is the solution for the source after
nverting the smooth model as described in Section 2.3 (the subscript
 indicates a previously obtained quantity). Such residuals will persist 
egardless of the smooth potential used to describe the lens, although
hey may be absorbed to some degree into the source surface bright-
ess or by modifying the values of the parameters η (e.g. Bayer 2021 ).
If the residuals from the smooth modelling are not noise-like, then

he inclusion of a new lens potential component may be warranted
n order for δd → 0 (or, more precisely, δd reaching the properties
f the noise). The most general treatment of such a component is
ssuming a potential perturbations field, δψ , which to first order can
e described by (Koopmans 2005 ): 

d = −BD s ( s p ) D δψ δψ , (3) 

here D s ( s p ) is a matrix containing the gradient of the previously
nown source s p , and D δψ is the gradient operator of the potential
erturbations that yield δα, the perturbative deflection angle vector 
see appendix A of Koopmans 2005 , for a deri v ation of this equa-
ion). This equation describes how potential perturbations induce 
dditional deflections, causing the positions in the image plane to 
ecome associated with a different position in the source plane, 
nd hence with a different source brightness. These deflections are 
ssumed to be small enough for the source to be well approximated
MNRAS 516, 1347–1372 (2022) 
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y a first-order Taylor expansion around the original unperturbed
ocations. In this way, the residual image plane brightness of the
mooth model can be associated with the gradient of the source
rightness and some small potential perturbation field. 
Equations ( 1 ), ( 2 ), and ( 3 ) can be combined to reformulate the

ensing problem as (Koopmans 2005 ; Vegetti & Koopmans 2009 ): 

d = M r r + n , (4) 

here M r is the block matrix: 

 r ≡ M r ( ψ p , s p ) = B[ L ( ψ p ) | − D s ( s p ) D δψ ] , (5) 

nd: 

r ≡
(

s 
δψ 

)
. (6) 

he similarity with equation ( 1 ) is striking, ho we ver, there is one
mportant difference: some prior knowledge of the source brightness
s necessary to construct the matrix D s ( s p ). The lens potential ψ p 

an either depend solely on η (in which case there is no need for the
ubscript), as is the case in equation ( 1 ), or it can include accumulated
orrections δψ p derived at previous stages – similarly to a Gauss–
ewton scheme where a small update to the previous solution is

alculated via a linear extrapolation. 
The δψ field can be approximated by N δψ pixels on the image

lane, which we here assume to be on a fixed regular P ×Q grid (as
pposed to, for example, being adaptive). The D s ( s p ) matrix entries
re calculated at the locations of the deflected data pixels on the
ource grid. Similarly, the D δψ operator determines the deri v ati ves of
ψ at the locations of the data pixels on the image plane. The product
 s ( s p ) D δψ δψ is a N d × N δψ matrix, whose rows contain the terms: 

 D s ( s p ) D δψ δψ ] i = 

∂s p ( y i ) 
∂y 1 

∂δψ( x i ) 
∂x 1 

+ 

∂s p ( y i ) 
∂y 2 

∂δψ( x i ) 
∂x 2 

, (7) 

here x are the data pixel coordinates on the image plane and y their
orresponding source plane positions. If the data and perturbation
rids coincide this matrix is diagonal, but usually the δψ grid has
 lower resolution such that each matrix row will contain the terms
nd corresponding weights resulting from a bilinear (in our case)
nterpolation on the δψ grid (i.e. δψ( x i ) = 

∑ 4 
j = 1 w i , j δψ i , j , where the

-th index goes over the four vertices of the δψ pixel encompassing
he i-th data pixel). 

.3 Model inversion 

he observed data result from the physical and instrumental pro-
esses of lensing and blurring, described as operators acting on a
ridded source (their order is important), the finite detector pixel
ize, and the inclusion of noise with some properties (e.g. statistical
oisson noise of photon counts, correlated noise introduced at data
eduction, cosmic rays, etc). Even in the absence of noise, inverting
quation ( 1 ) for the source is generally an ill-posed problem that
oes not have a unique or exact solution. One way to proceed is
y searching for a source solution that minimizes a regularized
enalty function. First, we define the penalty function, which is a
ikelihood function under the assumption of Gaussian errors in the
ata, excluding the perturbations δψ , to be the sum of a generalized
2 and a regularization term: 

 ( s ) ≡ G ( s | d , η, g s , λs ) 

= 

1 

2 
( M s − d ) T C 

−1 
d ( M s − d ) + 

1 

2 
λs s T C 

−1 
s ( g s ) s , (8) 

here M is the operator used in equation ( 2 ), and C d and C s are
he covariance matrices of the data and the source. In the case of
NRAS 516, 1347–1372 (2022) 
he source, C s may in general be a function of another set of non-
inear regularization parameters, g s – we take out the regularization
arameter λs to separate the effect of the o v erall lev el of source
rightness from the shape of its correlations and make its effect more
xplicit. The parameter λs sets the level of contribution to the o v erall
enalty of the regularization term with respect to the value of χ2 . In
he following, the covariance matrix C s is al w ays assumed to be a
unction of g s , while specific regularization schemes are discussed
n Section 2.5 . 

The source property used for regularization (gradient, curvature,
tc) is assumed to be distributed normally, i.e. a quadratic form
n equation ( 8 ), similarly to the χ2 term, guaranteeing that the
ource for which ∇ s G = 0 minimizes the penalty function (Suyu
t al. 2006 ). Using this condition, after some basic algebraic
anipulations, we get: 

 M 

T C 

−1 
d M + λs C 

−1 
s ) s = M 

T C 

−1 
d d , (9) 

here the matrix M 

T C 

−1 
d M + λs C 

−1 
s is now positive-definite and

an be inverted using standard techniques. The source that minimizes
he penalty function is found in this way for each set of fixed η, g s ,
nd λs . This solution implicitly assumes that the Gaussian random
eld describing the source has a zero mean. Although this is not
ormally correct because of the finite dimensions of the source
rid, this offset is in general easily absorbed by the shape of the
ovariance matrix, and as our tests later will show, this assumption
olds to very good approximation. 
Often, masking the data is required to isolate and model only the

ensed image features. This can be achieved by an operator S , acting
n the image plane and excluding all the pixels outside the mask
rom the modelling. This is simply a diagonal matrix with values of
 or 0 for included and excluded pixels, respectively. In equations ( 8 )
nd ( 9 ), this can be incorporated into a ‘masked’ covariance matrix
 

T C 

−1 
d S, all rest being the same. In the remaining treatment, C 

−1 
d 

nd S T C 

−1 
d S can be used interchangeably. 

Reformulating the problem to include the potential perturbations
s straightforward due to the similarity of equations ( 1 ) and ( 4 ).
s before, in general equation ( 4 ) cannot be directly inverted and
e have to proceed by minimizing some penalty function. Here
e define such a function similarly to equation ( 8 ), including an

dditional regularization term for the potential perturbations in the
ame way as for the source: 

 ( r ) ≡ G ( r | d , s p , ψ p , g s , λs , g δψ , λδψ ) 

= 

1 

2 
( M r r − d ) T C 

−1 
d ( M r r − d ) + 

1 

2 
r T R r , (10) 

here: 

 = 

(
λs C 

−1 
s 0 

0 λδψ C 

−1 
δψ 

)
. (11) 

e underline again that the important difference with equation ( 8 ) is
he dependence on a previously known source, s p (through M r ). This
quation has the same form as equation ( 8 ), and the condition ∇ r G
 0 leads to: 

 M 

T 
r C 

−1 
d M r + R) r = M 

T 
r C 

−1 
d d , (12) 

hich can be solved for r by inverting the positive-definite matrix
n the left-hand side. 

.4 Bay esian framew ork 

he number of free parameters involved in the lens potential and
ource reconstruction may vary between different models. For
xample, one may choose different parametric models for the smooth
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ass distribution, with or without additional perturbations, and 
egularization schemes (see Section 2.5 ). As in Suyu et al. ( 2006 )
nd Vegetti & Koopmans ( 2009 ), we use a Bayesian approach to
uantitatively justify the inclusion of extra free parameters and 
ompare models to find the one most consistent with the data -
ssuming all quantities are Gaussian processes. By recasting the 
roblem in Bayesian terms, the evidence term necessary to compare 
odels can be computed. In addition, the solutions for the source and

he perturbations obtained in the previous section, which minimize 
he penalty function, coincide with the most probable solutions that 
aximize the posterior probability. A similar treatment is followed 

n Suyu et al. ( 2006 ) and Vegetti & Koopmans ( 2009 ), ho we ver, here
e explicitly derive the expression for the evidence. 
Bayes’ theorem states that the posterior probability density of the 

ource and potential perturbations given the data, lensing operator, 
nd some form of prior (regularization) described by parameters g 
nd λ is: 

 ( r ) ≡ P ( r | d , η, g s , g δψ , λs , λδψ ) 

= 

P ( d | r , η) P ( s | g s , λs ) P ( δψ | g δψ , λδψ ) 

P ( d | η, g s , g δψ , λs , λδψ ) 
, (13) 

here the numerator terms are the likelihood, source prior, and 
otential perturbations prior, respectively, and the denominator is 
he evidence for this specific problem. Assuming the likelihood 
nd priors are normal distributions and associating them with the 
reviously introduced χ2 and regularization terms, their individual 
robability densities can be written as: 

P ( d | r , η) = 

1 

Z d 
exp 

[
−1 

2 
( M r r − d ) T C 

−1 
d ( M r r − d ) 

]
, 

P ( s | g s , λs ) = 

1 

Z s 
exp 

[
−1 

2 
λs s T C 

−1 
s s 

]
, 

 ( δψ | g δψ , λδψ ) = 

1 

Z δψ 

exp 

[
−1 

2 
λδψ δψ 

T C 

−1 
δψ δψ 

]
, (14) 

here the normalization factors are given by: 

Z d = (2 π ) N d / 2 ( det C d ) 
1 / 2 , 

Z s ( g s , λs ) = 

(
2 π

λs 

)N s / 2 

( det C s ) 
1 / 2 , 

 δψ ( g δψ , λδψ ) = 

(
2 π

λδψ 

)N δψ / 2 

( det C δψ ) 
1 / 2 . (15) 

he abo v e set of equations assumes that we already have a decent
olution for the source, s p , in order to derive M (see equation 5 ),
hich could come, for example, by solving the smooth version of the
roblem (see Koopmans 2005 ). The most probable solution for the 
ource and the perturbations – the one that maximizes the posterior 
robability – can be derived by requiring ∇ r P = 0 in equation ( 13 ).
his can be calculated independently of the evidence term, which is
 constant factor in this case. This is the solution that also minimizes
he penalty function in equation ( 10 ), which has already been given
n equation ( 12 ). 

The posterior in equation ( 13 ) is the product of equations ( 14 ),
ence it is itself a normal distribution and can be written as: 

 ( r ) = 

1 

Z G 
exp [ −G ( r )] , (16) 

here G ( r ) is given in equation ( 10 ). Taking a Taylor expansion of
 around the most probable solution r MP , which satisfies ∇ r G = 0

equation 12 ), we get: 

 ( r ) = G ( r MP ) + 

1 

2 
( r − r MP ) 

T H ( r − r MP ) , (17) 
here H is the Hessian of G : 

 ≡ ∇ 

2 
r G = M 

T 
r C 

−1 
d M r + R. (18) 

quation ( 17 ) is in fact exact – assuming we already know s p –
ecause all terms in equation ( 10 ) are quadratic in r . Equation ( 16 )
an now be rewritten as: 

 ( r ) = 

1 

Z G 
exp 

[
− G ( r MP ) − 1 

2 
( r − r MP ) 

T H ( r − r MP ) 

]
, (19) 

here: 

 G ≡ Z G ( η, g s , λs , g δψ , λδψ ) 

= e −G ( r MP ) (2 π ) (N s + N δψ ) / 2 ( det H ) −1 / 2 . (20) 

ombining equations ( 10 ), ( 14 ), ( 17 ), and ( 19 ) the evidence term
rom equation ( 13 ) can be computed for the most probable solution

r MP : 

 ( d | η, g s , g δψ , λs , λδψ ) = 

Z G ( η, g s , λs , g δψ , λδψ ) 

Z d Z s ( g s , λs ) Z δψ ( g δψ , λδψ ) 
. (21) 

ubstituting the normalization factors from equations ( 15 ) and ( 20 ),
nd taking the logarithm of the evidence we get: 

log P = −N d 

2 
log (2 π ) + 

N s 

2 
log ( λs ) + 

N δψ 

2 
log ( λδψ ) − 1 

2 
log ( det C d ) 

−1 

2 
log ( det C s ) − 1 

2 
log ( det C δψ ) − G ( r MP ) − 1 

2 
log ( det H ) . 

(22) 

Deriving an analytic expression for this term is necessary in 
rder to compute the posterior probability distribution of the non- 
inear parameters of the problem, i.e. the smooth lens potential and
egularization parameters. The latter is given by: 

P ( η, g s , g δψ , λs , λδψ | d ) = 

P ( d | η, g s , g δψ , λs , λδψ ) P ( η) P ( g s ) P ( g δψ ) P ( λs ) P ( λδψ ) 

E( d ) 
, (23) 

here the first term in the numerator – the likelihood – is precisely
he previous evidence term from equation ( 13 ) that has been derived
n equation ( 22 ), and the remaining terms are individual param-
ter priors. It is the evidence term in this last equation, E( d ) ≡
( d | H ψ , H s , H δψ ), where H are specific choices (hypotheses) of
 smooth lens potential model and regularization schemes for the 
ource and the potential perturbations, that eventually allows quanti- 
ative model comparisons. Similarly to Suyu et al. ( 2006 , but see also

acKay 1992 ), the posterior distribution of our model choices is: 

 ( H ψ , H s , H δψ | d ) ∝ E( d | H ψ , H s , H δψ ) P ( H ψ ) P ( H s ) P ( H δψ ) . 

(24) 

n this work, we calculate the term E by calculating the integral
f the posterior (see Section 2.6 ). This allows us to rank different
egularization schemes and find the one most consistent with the 
ata (the one with the largest value; MacKay 2003 ). Here we do
ot compare different smooth lens potential models, but exactly the 
ame procedure can be used to achieve this. 

.5 Regularization schemes 

dding regularization terms to the penalty function (equation 10 ), 
r equi v alently using priors in the posterior probability density
equation 13 ), is necessary in order to find a solution for the
ource and the potential perturbations by inverting the matrices 
n equations ( 9 ) and ( 12 ). Quadratic terms such as the ones used
MNRAS 516, 1347–1372 (2022) 
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penalty functions anymore. The solution minimizing the penalty function has 
to be found numerically at a higher computational cost. 
5 The δψ can in principle mimic almost any potential ψ( η) and hence only 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/516/1/1347/6644880 by U
niversity of G

roningen user on 15 M
arch 2023
ere (Gaussian priors), as opposed to other forms of regularization, 4 

ave the advantage of leading to linear equations that have exact
nd efficient to calculate analytic solutions (equations 9 and 12 ),
nd put the problem in the context of Gaussian process regression
Rasmussen & Williams 2006 ). 

The effect of the regularization on the source and perturbation
elds is captured in the detailed structure of the generic covariance
atrices C s and C δψ , while the o v erall contribution to the penalty

unction (posterior probability) is moderated by the λs and λδψ 

arameters. Here we examine different physically motivated forms
f the covariance matrices C s and C δψ , and because the treatment is
he same for both source and perturbations, we simply use C and λ
n the following. 

The usual forms of regularization impose some sort of ‘smooth-
ess’ condition on the solution (see Press et al. 1992 ). Choices in
he literature are based on deri v ati ves of some order (e.g. Dye &

arren 2005 ; Suyu et al. 2006 ; Vegetti & Koopmans 2009 ; Tagore
 Keeton 2014 ; Nightingale & Dye 2015 ; Yildirim et al. 2020 ). For

xample, a zero-th order deri v ati ve of the source (the usual Tikhonov
e gularization, or ridge re gression; Tikhono v 1963 ) means that C is
he identity matrix and brightness values are derived from a normal
istribution centred on zero with standard deviation λ−1/2 . Similarly,
he gradient and curvature regularizations constrain the correspond-
ng source deri v ati ves, imposing a v arying degree of smoothness to
he solution. Ho we ver, although such schemes are useful to find a
olution to the problem, they are not physically moti v ated (there
s no reason for the gradient or curvature of a galaxy’s brightness
rofile to follow a normal distribution centred at zero or any other
alue), may introduce spurious properties to the solutions, and cause
egeneracies between the source and the lens potential. In other
ords, the assumed covariance matrix resulting from these choices

mposes a correlation function (or power spectrum) on the source or
otential perturbations that might not reflect reality. 
A more realistic and general approach can involv e co variance ma-

rices C that do not correspond to any particular deri v ati ve and impose
 physically moti v ated structure, via its covariance, directly on the
olutions. Here we examine two forms of such covariance kernels: 

( y i , y j , l) = exp 

(
−d i , j 

l 

)
, (exponential) (25) 

( y i , y j , l) = exp 

( 

− d 2 i , j 

2 l 2 

) 

, (Gaussian) (26) 

here y are pixel coordinates, d i, j the Euclidean distance between
ixels i and j, and l is the characteristic correlation length of the
ernels (Rasmussen & Williams 2006 ). These two choices (also
nown as Ornstein–Uhlenbeck and squared exponential kernels,
espectively) constitute two opposite extremes of the more general

at ́ern kernel (e.g. Mertens, Ghosh & Koopmans 2017 ), and have
 single free parameter, l (which belongs to the g set of non-linear
egularization parameters). This gives more freedom for additional
tructure in the covariance matrices C beyond the fixed-form
eri v ati v e-based re gularization. Also, these co variance kernels
ppear in better agreement with various source brightness profiles,
s it will be shown by two examples later on (see also Vernardos,
sagkatakis & Pantazis 2020 ). The variance level (i.e. the diagonal
f the covariance matrix) is set by λ, and hence we assume here that
he diagonal values of C are by definition equal to unity. 

The potential perturbations given in equation ( 12 ) provide a mea-
ure of sub-galactic scale mass density fluctuations. The covariance
NRAS 516, 1347–1372 (2022) 

 Wayth et al. ( 2005 ) used maximum entropy regularization that has the benefit 
o prev ent ne gativ e values for the source at the cost of not having quadratic 

t
b
e
s

atrix C δψ is equi v alent to the correlation function (or two-point
orrelation function), which is related to the power spectrum via
he Fourier transform. Hence, measuring the covariance of δψ can
robe the sub-galactic matter power spectrum. Although there have
een theoretical and applied studies on this connection (Hezaveh
t al. 2016a ; Bayer et al. 2018 ; Chatterjee & Koopmans 2018 ; Diaz
ivero, Cyr -Racine & Dv orkin 2018 ), this work is the first consistent
pproach using the gravitational imaging technique. The derived
o wer spectrum/cov ariance of δψ can then be associated to higher
rder moments in the lens mass distribution (e.g. Hsueh et al. 2017 ;
ilman et al. 2018 ) or dark matter substructure (e.g. Hezaveh et al.
016a ). For the latter, a more realistic approach to disentangle the
ffect of baryons would be to compare the observed sub-galactic
cale perturbations to predictions from hydrodynamical simulations
e.g. Vogelsberger et al. 2014 ; Schaye et al. 2015 ). 

.6 Optimization 

here are three main components in our approach to modelling
ravitational lenses: the parametrized smooth lens potential, ψ , the
rid-based potential perturbations, δψ , and the grid-based source
rightness, s . The task is two-fold: (1) maximize the evidence for
ifferent choices of these components and compare them to find the
ombination that is most consistent with the data, and (2) within any
iven choice of model components, obtain the probability distribu-
ions of all the non-linear parameters in order to determine statistical
ncertainties, systematic biases, and degeneracies between them. We
lso seek to e v aluate ho w well our best s and δψ solutions, obtained at
he most probable values of the non-linear parameters (the Maximum
 Posteriori solutions, MAP), compare to the underlying truth. The

inear part of the problem provides an exact solution for s and δψ –
ssuming that we already know s p – that minimizes the penalty func-
ion and maximizes the posterior (equation 12 ), for fixed non-linear
arameters. Here we describe our treatment of the non-linear param-
ters, namely, the smooth potential parameters η, and the regulariza-
ion parameters g and λ for the source and the potential perturbations.

First, we emphasize that the lens potential is dominated by the
mooth model and any resulting perturbations are required to be
mall in order for equation ( 3 ) to be valid. This is also moti v ated by
ecent agreement between data and smooth models (e.g. Koopmans
t al. 2009 ; Auger et al. 2010 ; Suyu et al. 2014 ; Oldham & Auger
018 ), as well as evidence for lens perturbations (e.g. Vegetti et al.
012 ; MacLeod et al. 2013 ; Nierenberg et al. 2014 ; Hezaveh et al.
016b ; Birrer & Amara 2017 ). Solving simultaneously for η and
ψ , ho we v er, is de generate 5 and v ery inefficient; if η is far from the
ruth then δψ will try to make up for the correct sum of the smooth
otential and the perturbations, leading away from a realistic solution.
ence, as a first step we optimize for the parameters η assuming
ψ = 0, while simultaneously solving the linear equations for the
ource (equation 9 ). The parameter space of η is explored using a
ested-sampling approach (Skilling 2004 ), which provides several
enefits: it computes the evidence term in equation ( 23 ) with the
ψ = 0 assumption, finds the most probable parameters, provides
onfidence intervals, and explores a large part of the parameter space
he sum of the total potential is rele v ant. In practice ho we ver, ψ( η) is set 
y general processes of galaxy formation and phase-space mixing and is 
xpected to be smooth, while δψ describes any remaining structure such as 
ub-haloes, streams, etc. 
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Figure 1. Lensed images (top), source (middle), and residuals (bottom) for the mock data (truth) and the reconstructions with different source regularization 
kernels: identity, curvature, exponential, and Gaussian. The source brightness, shown as Voronoi cells of an adaptive grid (see Section 2.1 ), has been reconstructed 
using n = 3. The corresponding parameters for the lens potential and the source regularization are shown in Table 1 . 
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ith a limited chance of getting stuck in local extrema. There is the
dditional option to start a Monte Carlo Markov Chain exploration 
f the parameter space near the most probable solution to obtain 
moother posterior probability distributions. 

Once the smooth model is determined, the parameters η are kept 
xed to their maximum a posteriori values and solving for r (the 
otential perturbations and the source) is conducted. The varying 
on-linear parameters are now the regularization parameters g and λ, 
ogether describing the source and perturbation covariance matrices. 
lthough it is possible to solve approximately for the λ parameters, 

t least in the case with δψ = 0 (Koopmans 2005 ; Suyu et al. 2006 ),
ere we incorporate them in the full non-linear treatment. This allows 
ne to infer confidence intervals and, most importantly, degeneracies 
etween the source and the potential solutions. 

The perturbations investigated here are assumed to be small 
nd originate from an extended field of mass-density fluctuations 
ermeating the lens, as opposed to specific and localized massive 
ubstructures, such as dark sub-haloes. For such prominent and 
onfined perturbers, an iterative approach 6 would indeed be expected 
o perform better in locating and measuring the mass of putative 

assive substructures, carefully controlling the regularization pa- 
ameters in the process (e.g. Suyu et al. 2006 ; Vegetti & Koopmans
009 ; Nightingale & Dye 2015 ; Hezaveh et al. 2016b ). In this work,
o we ver, we do not assume any restriction on the regularization
arameters and solve for r for each set of sampled non-linear 
 At the end of each iteration, the lens potential is updated by adding the newly 
etermined δψ and the D s ( s p ) matrix in equation ( 5 ) is recalculated based on 
he deri v ati ves of the ne wly determined source. 

K

7

8

arameters without updating the lens potential and the source. This 
pproach is sufficient to capture the statistical properties of the 
erturbations field, provided that its amplitude is small. Mixing 
he two approaches, i.e. sampling the regularization parameters and 
hen iterating up to a given number of steps for each combination,
ould be another possibility, especially when the extended field of 
erturbations also includes prominent mass concentrations such as 
ubhaloes, but this is out of the scope of this paper. 

 RESULTS  

n order to demonstrate the capabilities of our method, we examine
odelling aspects of mock lenses combining smooth and complex 

ens potentials and source light profiles. In all cases, we use a point
pread function (PSF) simulated for the Hubble Space Telescope 
 HST ) using the TINY-TIM 

7 software (Krist, Hook & Stoehr 2010 ),
hich is assumed to be the same in creating and modelling the mock
ata, uniform Gaussian random noise with a signal-to-noise ratio of 
40 at peak brightness, and a mask to exclude regions of the image
ithout lensing features (also the central part of the image that may
old residuals after removing the lens galaxy light, which we do not
nclude or model). We generate the mocks using the MOLET 8 software
ackage (Vernardos 2022 ). 

The smooth parametric model used for the lens potential is 
 singular isothermal ellipsoid (SIE; Kassiola & Kovner 1993 ; 
ormann, Schneider & Bartelmann 1994 ). We follow the notation 
MNRAS 516, 1347–1372 (2022) 

 ht tp://www.st sci.edu/hst/observat ory/focus/T inyT im 

 https:// github.com/gvernard/ molet

art/stac1924_f1.eps
http://www.stsci.edu/hst/observatory/focus/TinyTim
https://github.com/gvernard/molet
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Figure 2. Fourier power spectrum of the model residuals shown in the bottom 

row of Fig. 1 . 

w  

p  

a  

c  

i  

k  

p  

e  

T  

i  

T  

r  

n  

e  

m  

v  

n  

(  

F  

A  

t  

e  

o  

l  

m  

b  

t  

n  

p  

i  

r  

b  

b
 

s  

S  

(  

c  

10 Or a delta function two-point correlation function, which is the inverse 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/516/1/1347/6644880 by U
niversity of G

roningen user on 15 M
arch 2023
f Schneider, Kochanek & Wambsganss ( 2006 ), with convergence
iven by: 

( ω) = 

b 

2 ω 

, (27) 

here ω = 

√ 

q 2 x 2 + y 2 , q is the minor to major axial ratio, and b
in arcsec) describes the o v erall potential strength. 9 This relation
olds in the reference system whose x-axis is aligned with the
llipsoid’s major axis, rotated by the position angle, θ , and whose
rigin coincides with the lens centre ( x 0 , y 0 ). External shear with
agnitude γ and direction φ is included, leading to seven free

arameters in total, hereafter denoted as η. All angles are measured
ast-of-north, in order to remain consistent with the standard celestial
efinition. 

.1 Smooth lens and smooth source 

 simulated lens system is created with a single massive lensing
alaxy having ( b , q , θ , x 0 , y 0 , γ , φ) = (0.9, 0.8, −135 ◦, 0, 0, 0.03,
40 ◦). The source brightness distribution consists of two Gaussian

omponents: the first is located at x , y = ( − 0.05, 0.05) arcsec on the
ource plane, has an axial ratio of 0.6, position angle of −70 ◦, and
tandard deviation on the x axis of σ x = 0.1 arcsec, while the second
omponent is at x , y = ( − 0.4, 0.25) arcsec and has σ x = σ y =
.1 arcsec (circular). The two components are scaled to have a peak
rightness ratio of 0.7, with the first one being the brighter. The data
re simulated on a square 3.5-arcsec 80-pixel field of view, having
 pixel size somewhat bigger than 0.04 arcsec. The corresponding
ource and resulting lensed images are shown in the left-hand column
n Fig. 1 . 

We model the system as a purely parametric smooth lens, without
ncluding any grid-based correction to the potential, using n = 3
or constructing the adaptive source plane grid (selecting 1 out of
very n × n pixels). In addition to the lens potential parameters,
he set of non-linear free parameters includes the regularization of
he source, i.e. λs and g s . We use four different source regularization
chemes with different associated parameters: identity ( λs ), curvature
 λs ), exponential kernel ( λs , l s ), and Gaussian kernel ( λs , l s ). The
ovariance between source pixels for the latter two schemes is
iven by equations ( 25 ) and ( 26 ) respectively; we note that the l s 
re different parameters in these two cases, indicating the length
here the correlation drops to roughly half its maximum. The
alue of the regularization parameter, λs , sets the overall level of
egularization and is inversely proportional to the source variance,
.g. smaller v alues allo w for more freedom in the source model.
his parameter is expected to vary between different schemes
ecause of the fundamentally different covariance matrices and
annot be straightforwardly compared. Instead, one can compare
he evidence values to determine which choice of regularization
s more justified by the data. We use the alternative curvature
efinition for adaptive grids provided in Vegetti & Koopmans
 2009 ), which has a fixed regularization pattern/correlation length
or a given grid. In this case, if H is a matrix holding the
umerical coefficients for the local curvature of the source then
 s = ( H 

T H ) −1 . 
Fig. 1 shows the reconstructed sources, lensed images, and

esiduals. To further examine the model residuals and compare
hem to the noise, we compute their Fourier power spectrum that
NRAS 516, 1347–1372 (2022) 

 We set b = 

√ 

q θEin , where the Einstein radius, θEin , is defined as the radius 
ithin which the integral of equation ( 27 ) becomes equal to unity. 

F
1

b
i

e show in Fig. 2 . In such plots, we ideally want the residual
ower spectrum to be flat, i.e. matching the noise. Any deviations
bo v e (more power) or below (less power) a flat line introduce more
orrelations and o v erfitting (absorbing the noise), respectiv ely, both
ndicating shortcomings of the employed model on the corresponding
 scales. Table 1 (top) lists the Maximum A Posteriori (MAP) model
arameters and the corresponding posterior probability terms from
quation ( 22 ), for the four different regularization schemes, while
able 2 lists the mean parameter values, the 68 per cent confidence

nterv als, and the e vidence, E in equation ( 23 ), for each model.
aking these results into account, we can see that the identity
egularization allows the solution to vary wildly, similarly to white
oise, resulting in an unrealistically grainy source. This is to be
xpected as the corresponding prior covariance matrix is the identity
atrix, which has a flat power spectrum 

10 and loosely constrains
alues of neighbouring pixels, allowing them to absorb more of the
oise and lead to o v erfitting. Despite having the lowest likelihood
i.e. χ2 term in Table 1 ), and thus the lowest residuals 11 as shown in
ig. 2 , the identity regularization also has the lo west e vidence v alue.
ll other three regularization schemes perform better in recovering

he source and the model parameters and give considerably higher
 vidence v alues. Ho we ver, the Gaussian kernel is decisi vely preferred
 v er the curvature and exponential kernels, having a Bayes factor of
og 10 K = 7.98 and 17.85, respectively (Jeffreys 1998 , assuming all

odels have the same prior probability). Although this is not the
est possible kernel, it is still a sufficient approximation to describe
he source brightness (see fig. 3 of Vernardos et al. 2020 ). As a final
ote, it can be seen that in all cases there is some o v erfitting, most
rominently for the identity regularization, that suppresses the noise
n the large scales ( k < 5 in Fig. 2 ). This can also be seen in the
econstructed sources in Fig. 1 , where the adaptive grid voronoi cells
ecome noisy and do not drop to zero as we mo v e a way from the
rightest pixels. 
The full non-linear parameter probability densities for the recon-

truction with the Gaussian kernel are shown in Fig. 3 . The Nested
ampling method (Skilling 2004 ), whose MultiNest implementation
Feroz, Hobson & Bridges 2009 ) is used here, is designed to
ompute the Bayesian evidence but can still sample the probability
ourier transform of the power spectrum (i.e. the Wiener–Khinchin theorem). 
1 These residuals result from n = 3 for the adaptive grid and are expected to 
e reduced by increasing the number of pixels used to describe the source, 
.e. n = 2 or n = 1. 
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Table 1. Values of the lens potential ( η) and source regularization parameters ( λs , g s ) that maximize the posterior probability density, i.e. 
Maximum A Posteriori (MAP) values, and corresponding terms from equation ( 22 ). The smooth source (top part of the table) is described in 
Section 3.1 and the lensed images corresponding to the parameters listed here are shown in Fig. 1 . Similarly, NGC 3982 and NGC 2623 (middle 
and bottom parts) are described in Section 3.2 and shown in Figs 4 and 5 . 

Name Units Truth Identity Curvature Exponential Gaussian 

Smooth source b arcsec 0.9 0.894 0.897 0.898 0.897 
q – 0.8 0.790 0.795 0.796 0.795 
θ ◦ −135 −136.208 −135.031 −135.176 −135.135 
x 0 arcsec 0 −0.022 −0.021 −0.021 −0.021 
y 0 arcsec 0 0.022 0.022 0.022 0.022 
γ – 0.03 0.028 0.029 0.029 0.029 
φ ◦ −40 −37.278 −39.436 −39.352 −39.340 
λs – – 7.945 0.121 29.379 86.581 
l s arcsec – – – 0.675 0.128 

− N d 
2 log (2 π) † −3536.08 −3536.08 −3536.08 −3536.08 

N s 
2 log ( λs ) 755.44 −769.81 1232.11 1626.06 

− 1 
2 log ( det C d ) † 24020.04 24020.04 24020.04 24020.04 

− 1 
2 log ( det C s ) 0 3175.55 907.62 583.66 

− 1 
2 χ

2 −1648.13 −1797.81 −1765.54 −1765.10 
− 1 

2 λs s T C 

−1 
s s −257.99 −109.26 −133.33 −127.33 

− 1 
2 log ( det H ) −1916.13 −2757.57 −2525.20 −2556.19 

log P 17417.16 18225.07 18199.64 18245.07 

NGC 3982 b arcsec 0.9 0.896 0.891 0.895 0.895 
q – 0.8 0.793 0.785 0.791 0.791 
θ ◦ −135 −134.743 −133.491 −133.837 −134.473 
x 0 arcsec 0 −0.023 −0.021 −0.022 −0.022 
y 0 arcsec 0 0.023 0.025 0.024 0.024 
γ – 0.03 0.029 0.027 0.028 0.029 
φ ◦ −40 −40.203 −41.950 −41.619 −40.533 
λs – – 16.172 0.126 69.969 56.937 
l s arcsec – – – 0.385 0.194 

− N d 
2 log (2 π) † −4307.06 −4307.06 −4307.06 −4307.06 

N s 
2 log ( λs ) 1014.51 −755.05 1548.42 1473.29 

− 1 
2 log ( det C d ) † 25672.50 25672.50 25672.50 25672.50 

− 1 
2 log ( det C s ) 0 3181.83 711.78 684.29 

− 1 
2 χ

2 −2083.00 −2383.13 −2271.33 −2207.01 
− 1 

2 λs s T C 

−1 
s s −291.20 −151.58 −172.64 −194.16 

− 1 
2 log ( det H ) −2335.42 −2929.98 −2766.41 −2685.90 

log P 17670.32 18327.53 18415.24 18435.95 

NGC 2623 b arcsec 0.9 0.900 0.903 0.901 0.901 
q – 0.8 0.802 0.808 0.804 0.803 
θ ◦ −135 −135.151 −132.769 −134.165 −134.464 
x 0 arcsec 0 −0.020 −0.018 −0.020 −0.020 
y 0 arcsec 0 0.020 0.019 0.021 0.021 
γ – 0.03 0.033 0.033 0.033 0.033 
φ ◦ −40 −39.932 −44.236 −41.881 −41.180 
λs – – 25.623 0.016 64.835 37.979 
l s arcsec – – – 0.078 0.065 

− N d 
2 log (2 π) † −3145.53 −3145.53 −3145.53 −3145.53 

N s 
2 log ( λs ) 1182.25 −1507.27 1520.64 1325.70 

− 1 
2 log ( det C d ) † 25983.49 25983.49 25983.49 25983.49 

− 1 
2 log ( det C s ) 0 3179.82 223.29 328.69 

− 1 
2 χ

2 −1705.31 −1846.70 −1735.70 −1762.97 
− 1 

2 λs s T C 

−1 
s s −213.42 −162.16 −169.34 −175.53 

− 1 
2 log ( det H ) −2063.98 −2292.50 −2309.65 −2250.27 

log P 20037.50 20209.16 20367.20 20303.59 

Note. † constant 
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istributions at their peak almost as well as an MCMC algorithm. 
o we ver, if such a method is chosen from start it would neither
uarantee convergence to the global maximum nor compute the 
vidence (or be extremely inefficient in doing so). The reco v ered
robability distributions for the lens model parameters b , q , θ , γ ,
nd φ contain the true values within confidence intervals of 1 to 2 σ .
he lens centre is systematically offset by approx. half a pixel in the
e gativ e x and positive y directions, which is due to a corresponding
hift in the PSF’s brightest pixel. There are no degeneracies observed
etween the parameters, other than the expected b − q correlation 
MNRAS 516, 1347–1372 (2022) 
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Table 2. Mean values and 68 per cent confidence intervals for the lens potential ( η) and source regularization parameters ( λs , g s ), and 
corresponding evidence values, E in equation ( 23 ). The smooth source (top part of the table) is described in Section 3.1 , while NGC 3982 
and NGC 2623 (middle and bottom parts) are described in Section 3.2 . The lens centre appears shifted by about half a pixel in the x and y 
directions due to a corresponding shift in the PSF. The full probability densities for the Gaussian regularization model of the smooth source 
(top part of the table) are shown in Fig. 3 . 

Name Units Truth Identity Curvature Exponential Gaussian 

Smooth source b arcsec 0.9 0 . 894 + 0 . 001 
−0 . 001 0 . 897 + 0 . 002 

−0 . 003 0 . 898 + 0 . 002 
−0 . 003 0 . 897 + 0 . 002 

−0 . 002 

q – 0.8 0 . 790 + 0 . 002 
−0 . 002 0 . 795 + 0 . 004 

−0 . 005 0 . 796 + 0 . 003 
−0 . 005 0 . 795 + 0 . 003 

−0 . 004 

θ ◦ −135 −136 . 208 + 0 . 484 
−0 . 750 −135 . 031 + 0 . 514 

−0 . 504 −135 . 176 + 0 . 591 
−0 . 598 −135 . 135 + 0 . 556 

−0 . 633 

x 0 arcsec 0 −0 . 022 + 0 . 001 
−0 . 001 −0 . 021 + 0 . 001 

−0 . 001 −0 . 021 + 0 . 001 
−0 . 001 −0 . 021 + 0 . 001 

−0 . 001 

y 0 arcsec 0 0 . 022 + 0 . 001 
−0 . 001 0 . 022 + 0 . 001 

−0 . 001 0 . 022 + 0 . 001 
−0 . 001 0 . 022 + 0 . 001 

−0 . 001 

γ – 0.03 0 . 028 + 0 . 001 
−0 . 001 0 . 029 + 0 . 001 

−0 . 001 0 . 029 + 0 . 001 
−0 . 001 0 . 029 + 0 . 001 

−0 . 001 

φ ◦ −40 −37 . 278 + 1 . 480 
−0 . 995 −39 . 436 + 1 . 101 

−0 . 993 −39 . 352 + 1 . 171 
−1 . 238 −39 . 340 + 1 . 183 

−1 . 184 

λs – – 7 . 958 + 0 . 801 
−0 . 753 0 . 122 + 0 . 005 

−0 . 042 30 . 355 + 5 . 243 
−9 . 475 86 . 992 + 8 . 063 

−9 . 020 

l s arcsec – – – 0 . 695 + 0 . 169 
−0 . 182 0 . 129 + 0 . 004 

−0 . 004 

log E 17388.46 ± 0.58 18190.35 ± 0.55 18167.62 ± 0.55 18208.74 ± 0.57 

NGC 3982 b arcsec 0.9 0 . 896 + 0 . 001 
−0 . 004 0 . 891 + 0 . 002 

−0 . 002 0 . 895 + 0 . 004 
−0 . 004 0 . 895 + 0 . 005 

−0 . 005 

q – 0.8 0 . 793 + 0 . 001 
−0 . 008 0 . 785 + 0 . 003 

−0 . 003 0 . 791 + 0 . 007 
−0 . 007 0 . 791 + 0 . 008 

−0 . 009 

θ ◦ −135 −134 . 743 + 0 . 499 
−0 . 445 −133 . 491 + 0 . 425 

−0 . 443 −133 . 837 + 0 . 709 
−0 . 758 −134 . 473 + 0 . 599 

−0 . 653 

x 0 arcsec 0 −0 . 023 + 0 . 001 
−0 . 001 −0 . 021 + 0 . 001 

−0 . 001 −0 . 022 + 0 . 001 
−0 . 001 −0 . 022 + 0 . 001 

−0 . 001 

y 0 arcsec 0 0 . 023 + 0 . 001 
−0 . 001 0 . 025 + 0 . 001 

−0 . 001 0 . 024 + 0 . 001 
−0 . 001 0 . 024 + 0 . 001 

−0 . 001 

γ – 0.03 0 . 029 + 0 . 000 
−0 . 002 0 . 027 + 0 . 001 

−0 . 001 0 . 028 + 0 . 002 
−0 . 002 0 . 029 + 0 . 002 

−0 . 002 

φ ◦ −40 −40 . 203 + 0 . 935 
−0 . 942 −41 . 950 + 1 . 134 

−1 . 089 −41 . 619 + 1 . 544 
−1 . 256 −40 . 533 + 1 . 435 

−1 . 007 

λs – – 16 . 197 + 0 . 871 
−0 . 881 0 . 126 + 0 . 005 

−0 . 046 73 . 260 + 21 . 781 
−23 . 072 57 . 157 + 4 . 580 

−5 . 430 

l s arcsec – – – 0 . 408 + 0 . 070 
−0 . 167 0 . 194 + 0 . 008 

−0 . 007 

log E 17635.43 ± 0.57 18296.66 ± 0.56 18382.97 ± 0.56 18407.46 ± 0.58 

NGC 2923 b arcsec 0.9 0 . 900 + 0 . 001 
−0 . 001 0 . 903 + 0 . 002 

−0 . 002 0 . 901 + 0 . 001 
−0 . 001 0 . 901 + 0 . 001 

−0 . 001 

q – 0.8 0 . 802 + 0 . 002 
−0 . 002 0 . 808 + 0 . 004 

−0 . 004 0 . 804 + 0 . 002 
−0 . 002 0 . 803 + 0 . 002 

−0 . 002 

θ ◦ −135 −135 . 151 + 0 . 302 
−0 . 376 −132 . 769 + 0 . 439 

−0 . 521 −134 . 165 + 0 . 516 
−0 . 747 −134 . 464 + 0 . 452 

−0 . 614 

x 0 arcsec 0 −0 . 020 + 0 . 001 
−0 . 001 −0 . 018 + 0 . 001 

−0 . 000 −0 . 020 + 0 . 001 
−0 . 001 −0 . 020 + 0 . 001 

−0 . 001 

y 0 arcsec 0 0 . 020 + 0 . 001 
−0 . 001 0 . 019 + 0 . 001 

−0 . 001 0 . 021 + 0 . 001 
−0 . 001 0 . 021 + 0 . 001 

−0 . 001 

γ – 0.03 0 . 033 + 0 . 001 
−0 . 001 0 . 033 + 0 . 001 

−0 . 001 0 . 033 + 0 . 001 
−0 . 001 0 . 033 + 0 . 001 

−0 . 001 

φ ◦ −40 −39 . 932 + 0 . 747 
−0 . 532 −44 . 236 + 0 . 953 

−0 . 771 −41 . 881 + 1 . 327 
−0 . 906 −41 . 180 + 1 . 096 

−0 . 804 

λs – – 25 . 678 + 1 . 626 
−1 . 717 0 . 016 + 0 . 001 

−0 . 005 65 . 296 + 7 . 285 
−7 . 873 38 . 388 + 5 . 278 

−5 . 801 

l s arcsec – – – 0 . 079 + 0 . 009 
−0 . 013 0 . 065 + 0 . 005 

−0 . 006 

log E 20028.44 ± 0.59 20221.07 ± 0.58 20330.95 ± 0.59 20296.56 ± 0.59 
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rom equation ( 27 ) and those between b − γ , q − γ , and θ − φ, which
eflect the known de generac y between the strength and orientation
f the SIE and the external shear (e.g. see part 2 of Schneider et al.
006 ). The joint probability distribution of λs and l s allows for useful
onclusions on the behaviour of the source regularization. Here,
here is a very weak anticorrelation between λs and l s , which is
omewhat expected: increasing the overall regularization parameter
s smooths out the reconstructed source, as does increasing the
orrelation length l s in the covariance kernel. This anticorrelation
ill become more prominent in the following, but it is worth pointing

t out already at this smooth example. Such information will be
ncreasingly helpful in quantifying the degree of de generac y between

ore complex sources and perturbed lens potentials in subsequent
xamples. 
NRAS 516, 1347–1372 (2022) 

i  
.2 Smooth lens and complex source 

etting the lens potential to the same smooth parametric model as
efore, we now change the source brightness profile to more realistic
nes taken from observed galaxies. We use high resolution HST
rchi v al observ ations of NGC 3982 (a spiral galaxy) and NGC 2623
a merger) taken with the ACS instrument, selected to represent
 wider range of possible strongly lensed sources. We scale the
ource angular size arbitrarily to around 1 arcsec, roughly the same
s for the analytic source used in the previous section. The HST
mages are scaled down dramatically in size and are significantly
 v ersampled compared to the sampling of the final mock data. We
ake this subpixel structure into account by heavily o v ersampling the

ock data by a factor of 10, producing very high resolution lensed
mages, applying an o v ersampled PSF, and finally av eraging to the
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Figur e 3. Mar ginalized probability densities and histograms for the lens potential ( η) and regularization ( λs , g s ) parameters for the Gaussian kernel reconstruction 
of the smooth source described in Section 3.1 . The parameter ranges are set to match Fig. 12 and facilitate comparisons with the results described in Sections 3.3 
and 3.4 – a zoomed-in version of this plot that shows the shape of the 2D distributions better is shown in Fig. A1 . The true values of the smooth potential 
parameters ( η) are indicated by the vertical and horizontal black lines and the points (squares). Contours are drawn at the 68 and 95 per cent confidence intervals. 
The corresponding mean values and 68 per cent confidence intervals are listed in Table 2 . 
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nal pixel scale: the same square 3.5-arcsec 80-pixel field of view as
efore. The resulting mock lensed images are shown in Figs 4 and 5 .
Fig. 6 shows the two-point correlation function 12 of the HST obser-

ations, as well as visual fits of the exponential and Gaussian kernels
2 We compute the two-point correlation function from the non-zero covari- 
nce matrix elements and the distance between the corresponding pixels. 
he covariance matrices can be constructed directly from the images, i.e. 
y calculating the correlation coefficients between all the pixels, or by the 
ernels discussed in Section 2.5 . 

e  

t  
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p  

s

nd the corresponding best-fitting correlation length parameters (top 
anel). It can be clearly seen that the true underlying covariance 
roperties of these two objects can, in principle, be captured very
ell by each regularization scheme. Using these schemes in solving 

quation ( 9 ) imposes a realistic prior on the reconstructed source
hat is moti v ated by real observ ations, as opposed to, for example,
urvature regularization, which implicitly imposes a correlation that 
s unlikely to match the truth. 

We model the two systems exactly in the same way as in the
revious section, i.e. using n = 3 and the same four regularization
chemes. The reconstructed sources, lensed images, and residuals 
MNRAS 516, 1347–1372 (2022) 
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Figure 4. Same as Fig. 1 for NGC 3982. 

Figure 5. Same as Fig. 1 for NGC 2623. 
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re shown in Figs 4 and 5 , while the MAP and mean parameters
nd evidence terms are listed in Tables 1 and 2 . In Fig. 6 we
ompare the radially averaged two-point correlation functions of the
nlensed ( HST -observed) sources and their reconstructions with the
NRAS 516, 1347–1372 (2022) 
riors imposed by the covariance matrix C s . Correlations imposed
y curvature regularization have a fixed length (no free parameters)
nd are quite different from the truth: pixels that are far from each
ther are much more correlated than, for example, in the case of
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Figure 6. Radially averaged two-point correlation functions, defined directly 
from the covariance matrix and the distance between the pixels, for the 
unlensed ( HST -observed) images of NGC 3982 and NGC 2623 (triangles and 
squares, respectively) and their corresponding reconstructions (solid lines) 
and priors (dashed lines). The l s parameter for the exponential and Gaussian 
priors changes in each panel as indicated. We have assumed the angular size of 
the unlensed sources to be ≈1 arcsec, therefore the values on the horizontal 
axis are scaled accordingly. The functions have been normalized to unity 
to factor out the effect of λs and the pixel resolution. Top: the exponential 
and Gaussian theoretical covariance kernels from equations ( 25 ) and ( 26 ) are 
sho wn for v alues of l s selected to visually match the data. Middle and bottom: 
the l s parameters for the exponential and Gaussian covariance kernel priors 
are set to their MAP values (see Table 1 ). The two-point correlation function 
of an identity regularization prior would be a delta function centred at zero. 
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Figure 7. Fourier power spectra of the model residuals shown in the bottom 

rows of Figs 4 (top panel) and 5 (bottom panel). 
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n exponential kernel, reflecting the implicit smoothness prior. This 

s a direct consequence of C s being a quite dense matrix: if H is a
atrix holding the numerical coefficients for the local curvature of 

he source, then C s = ( H 

T H ) −1 , and although H , H 

T , and H 

T H are
elatively sparse matrices, ( H 

T H ) −1 is not. However, the quality of the
ata is high enough to drive the solution close to the truth regardless of
he regularization scheme/assumed prior – the two-point correlation 
unctions for all the reconstructions lie on top of each other 13 in
ig. 6 . Even the reconstruction using the least physically moti v ated
3 The reconstructions become completely smooth and match almost perfectly 
he truth and the reco v ered co variance matrix if the reconstructed sources are 

a  

i
r

dentity regularization manages to recover the correct correlations 
f the source, suggesting that the solution is driven by the data and
ot the prior and therefore is not very degenerate. Nevertheless, 
he evidence values (see Table 2 ) are maximized by the correct
egularization scheme in each case, viz. Gaussian for NGC 3982 
nd exponential for NGC 2623. Comparing the mean values and 
onfidence intervals of the correlation length parameter, l s , to the
ruth, i.e. those obtained from the observed images (see Fig. 6 ), we
nd a good agreement for both cases, despite the MAP value for
GC 2623 being quite low (see Fig. 6 ). 
Fig. 7 shows the Fourier power spectra of the model residuals

or the two systems, shown in the bottom rows of Figs 4 and 5 .
omparing these power spectra we see that the identity regularization 

eads to o v erfitting, as is the case for the smooth source examined in
ection 3.1 . Curvature regularization produces residuals on the large 
cales (small wavenumber k ), while the more physically moti v ated
xponential and Gaussian regularizations result residuals closest 
o the noise and at the same time a v oid o v erfitting. Despite the
uccessful modelling of the smooth lens potential and finding the 
orrect source prior, there is still some unmodelled flux in the
esiduals (at SSE in the residuals in Fig. 4 and N in Fig. 5 ), which
esults from using n = 3 to construct the adaptive grid, a value too
igh to account for the complex small-scale source structure. Such 
esiduals could erroneously be interpreted as spurious lens potential 
erturbations when modelling real data – this is examined more 
losely in Section 3.4 . 

.3 Modelling potential perturbations 

 lens potential fully described by a parametrized smooth lens model, 
s examined so far, might be an idealized scenario. Therefore, in this
MNRAS 516, 1347–1372 (2022) 

nterpolated from the adaptive Delaunay grid on to a regular grid with similar 
esolution. 
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Figure 8. Same as Fig. 1 , with the addition of the true and reconstructed perturbations δψ (third row, in the same dimensionless units as the SIE lens potential 
corresponding to equation 27 ). The different models shown in each column are described in Section 3.3 . The bottom left-hand panel shows the difference 
between the perturbed (top left-hand panel) and unperturbed systems (top left-hand panel of Fig. 1 ). 
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ection we introduce and model potential perturbations. We adopt
he same smooth lens potential used in Sections 3.1 and 3.2 , which
e perturb using a Gaussian Random Field (GRF) of perturbations
ψ . GRF perturbations are defined by their power spectrum, which,
n this case, we assume to be a power law: 

 ( k) = A k β, (28) 

here A is the amplitude, associated to the variance of the zero-
ean δψ field (for more details see Bayer et al. 2018 ; Chatterjee
 Koopmans 2018 ; Chatterjee 2019 ), β is the slope, and k is the
avenumber of the Fourier harmonics. Regardless of our particular

hoice of GRF perturbations, the generality of the analysis presented
ere is not affected – in fact, any form of potential perturbations
ould be used and modelled. 

We generate a single realization of δψ from a GRF having log 10 ( A ),
= ( − 7.8, −5.5), in the same 80 × 80 pixel grid as the mock

mage. Within the masked region of the field of view, the GRF field
as slightly different A and β parameters (see Table 5 and Fig. 9 ).
he resulting perturbations vary in magnitude between roughly ±13
er cent of the average smooth lens potential (within the mask). The
ource (the same as the one used in Section 3.1 ), the perturbations,
nd the corresponding lensed image are shown in the left-hand
olumn in Fig. 8 . The difference 14 between the mock data with
NRAS 516, 1347–1372 (2022) 

4 We first subtract the perturbed and unperturbed mock lens images without 
ny noise, and then add an artificial white noise realization with the same 
ignal-to-noise ratio as the unperturbed case. 

ξ

w  

k  

G  
he purely smooth underlying lens model used in Section 3.1 (top
eft-hand panel in Fig. 1 ) and its perturbed version used here (top
eft-hand panel in Fig. 8 ) is shown in Fig. 8 , bottom left-hand panel.

An important and basic observation we need to make here is that
n order to be able to reconstruct any perturbing δψ , there needs to
e some lensed light locally around it. This can be understood by
xamining matrix M r (equation 5 ), which extends the smooth lens
odelling framework presented in Section 2 to include potential

erturbations: if there is no source light (strictly speaking, if the
ource light is constant, i.e. its deri v ati ve is zero) then the terms D s ( s p )
ntroduced in equation ( 3 ), and consequently the entire perturbing
art of M r , vanish. The δψ are then reconstructed based mainly on the
egularization prior. As a result, in general, the further a reconstructed
ψ value is from pixels with some lensed light in them the less
ccurate its estimate based on the data becomes. In the following,
e do not attempt to mitigate this and our reconstructed δψ away

rom pixels with brightness should be viewed as an extrapolation
egularized by the prior. A similar argument holds for the smooth
otential as well. 
The covariance matrix of a GRF field is derived from its two-point

orrelation function, which is simply the inverse Fourier transform of
ts power spectrum. For a GRF with a po wer-law po wer spectrum, like
he one given in equation ( 28 ), the two-point correlation function is: 

( r) = 2 πAJ 0 ( k max r) k β+ 2 
max , (29) 

here J 0 is the zeroth-order Bessel function of the first kind, and
 max the maximum wavenumber. Ho we ver, the mask truncates the
RF and changes its covariance properties so that the above relation
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Figure 9. Radially averaged two-point correlation functions of the true δψ 

field (circles), the reconstructions from the models shown in Fig. 8 (solid lines, 
see Section 3.3 for details), and different C δψ priors (dashed lines). The priors 
for the XFF and FFF-smooth models are Gaussian with the l δψ parameter 
MAP value indicated in the parentheses (see Table 3 ). The black dotted line 
is a Gaussian fit to the correlation function of the masked δψ with l δψ = 0.36 
(using equation 26 ). The grey dotted line is directly plotted from equation ( 29 ), 
i.e. not a fit, with k max set to the diagonal of the 3.5 arcsec field of view. 
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annot be used to construct a regularization kernel anymore. In this
ase, the Gaussian kernel provides a sufficiently good approximation 
or the two-point correlation function, as shown in Fig. 9 . 

To model the perturbed system, we use a Gaussian regularization 
ernel for both s and δψ , and n = 3 for reconstructing the adaptive
ource grid. The size of the pixel grid to reconstruct the perturbations
ψ on and n set the number of free parameters of any model and can
e selected by maximizing the Bayesian evidence (Vegetti et al. 
012 ). Ho we ver, this is outside the scope of this work – and a
omputationally very demanding task. We use a 30 × 30 pixel grid 
or δψ , which has enough resolution to capture the details of the
rue underlying GRF perturbations while still leading to tractable 
omputations (such a grid has been also used in the case of a single
Table 3. MAP parameter values and corresponding probability terms (from equa
are described in Section 3.3 and model FFF-complex in 3.4 . Notice that the dimen

Name Units Truth XXF 

b arcsec 0.9 –
q – 0.8 –
θ ◦ −135 –
x 0 arcsec 0 –
y 0 arcsec 0 –
γ – 0.03 –
φ ◦ −40 –
λs – - (88.068 fixe
l s arcsec - (0.128 fixe
λδψ – – 30796.077
l δψ arcsec – 0.427 

− N d 
2 log (2 π ) † −3571.00

N s 
2 log ( λs ) 1534.75 

N δψ 
2 log ( λδψ ) 4650.81 

− 1 
2 log ( det C d ) † 24021.55

− 1 
2 log ( det C s ) 591.56 

− 1 
2 log ( det C δψ ) 884.23 

− 1 
2 χ

2 −1764.76
− 1 

2 λs s T C 

−1 
s s − 1 

2 λδψ δψ 

T C 

−1 
δψ δψ −185.53

− 1 
2 log ( det H ) −8199.20

log P 17962.42

Note. † constant 
erturbing substructure, e.g. Koopmans 2005 ; Vegetti et al. 2012 ).
or each of the models presented in Fig. 13 we either fix (X) or set free
F) each of the three parameter sets η, ( λs , l s ) , ( λδψ , l δψ ) and name it
ccordingly, e.g. model XFX has only ( λs , l s ) free to vary. We model
he perturbed lens in three different set-ups: (i) we fix the smooth
ens model to the truth and the source regularization parameters to the
ean values of the Gaussian kernel model obtained in Section 3.1

see Table 2 ) and we sample only λδψ , g δψ (model XXF), (ii) we
x the smooth lens model to the truth and sample both λs , g s and
δψ , g δψ (model XFF), and (iii) we sample η, λs , g s , λδψ , and g δψ 
imultaneously (model FFF-smooth, not to confuse with the FFF- 
omplex model presented in the following section). Fig. 8 shows 
he resulting lensed images, reconstructed s and δψ , and residuals, 
able 3 lists the MAP model parameters and the posterior probability

erms from equation ( 22 ), and Table 4 lists the mean parameter values,
heir 68 per cent confidence intervals, and the evidence for each set-
p. Models XXF and XFF give almost identical results. Models 
FF and FFF-smooth reco v er a similar correlation length for the

ource, in very good agreement with the unperturbed case presented 
n Section 3.1 – this is also true for the parameters η reco v ered by
he FFF-smooth model. The correlation length of the perturbations, 
 δψ , has a very similar value for all the models; the values from XXF
nd XFF and the corresponding covariance matrices, C δψ , are in fact
o close that their determinants differ by very little (see Table 3 ). 

To further investigate the effect of the prior on the lens potential
erturbations, we e v aluate a model using curv ature regularization for
ψ . To do this, we fix η to their true values and sample λs , g s , and λδψ 

the XFF-curv model – there are no g δψ parameters in this case). First,
e notice that the values of λs and l s are almost identical with the XFF
odel, ho we ver, the e vidence has a much lo wer v alue, despite the

atter model having an additional free parameter. In Fig. 9 , we show
he two-point correlation function from this model and compare it 
ith the one from the true underlying δψ field and the reconstructions

rom the XFF and FFF-smooth models. It is evident that in this
ase the data and not the prior is driving the δψ reconstruction. In
MNRAS 516, 1347–1372 (2022) 

tion 22 , same as Table 1 ). Models XXF, XFF, XFF-curv, and FFF-smooth 
sions of the parameter space are not the same between the models. 

XFF XFF-curv FFF-smooth FFF-complex 

– – 0.895 0.881 
– – 0.799 0.772 
– – −134.351 −133.769 
– – −0.044 −0.054 
– – 0.017 0.026 
– – 0.032 0.036 
– – −40.767 −42.472 

d) 110.271 110.983 83.306 75.358 
d) 0.130 0.130 0.129 0.154 
 32806.464 18.418 117961.620 20345.966 

0.402 – 0.380 0.285 

 −3571.00 −3571.00 −3571.00 −3145.53 
1714.22 1716.57 1612.01 1668.14 

4679.27 1311.00 5255.15 4579.85 
 24021.55 24021.55 24021.55 26011.99 

586.57 587.30 584.15 394.75 
872.31 4297.36 859.87 710.49 

 −1777.64 −1804.76 −1726.69 −1616.15 
 −215.73 −208.68 −170.42 −246.74 
 −8332.19 −8424.01 −8749.70 −7981.98 
 17977.36 17925.32 18114.93 20374.82 

by U
niversity of G

roningen user on 15 M
arch 2023
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Table 4. Mean parameter values, 68 per cent confidence intervals, and evidence terms (same as Table 2 ). Models XXF, XFF, XFF-curv, and FFF-smooth are 
described in Section 3.3 and model FFF-complex in 3.4 . The full probability densities for models FFF-smooth and FFF-complex are shown in Fig. 12 . Notice 
that although the dimensions of the parameter space differ between the models, this is taken into account while integrating to calculate the evidence. We do not 
compare model FFF-complex to any other model, hence its evidence value is omitted. 

Name Units Truth XXF XFF XFF-curv FFF-smooth FFF-complex 

b arcsec 0.9 – – – 0 . 895 + 0 . 005 
−0 . 005 0 . 881 + 0 . 001 

−0 . 002 
q – 0.8 – – – 0 . 799 + 0 . 011 

−0 . 010 0 . 772 + 0 . 002 
−0 . 005 

θ ◦ −135 – – – −134 . 349 + 2 . 085 
−2 . 171 −133 . 769 + 0 . 643 

−0 . 460 

x 0 arcsec 0 – – – −0 . 044 + 0 . 003 
−0 . 004 −0 . 054 + 0 . 001 

−0 . 000 

y 0 arcsec 0 – – – 0 . 017 + 0 . 003 
−0 . 003 0 . 026 + 0 . 001 

−0 . 001 

γ – 0.03 – – – 0 . 032 + 0 . 003 
−0 . 003 0 . 036 + 0 . 001 

−0 . 002 

φ ◦ −40 – – – −40 . 768 + 4 . 199 
−3 . 640 −42 . 472 + 1 . 076 

−1 . 063 

λs – – – 110 . 703 + 9 . 289 
−10 . 443 111 . 384 + 9 . 815 

−10 . 931 83 . 742 + 8 . 318 
−9 . 443 77 . 163 + 15 . 816 

−16 . 099 

l s arcsec – – 0 . 130 + 0 . 004 
−0 . 004 0 . 130 + 0 . 004 

−0 . 004 0 . 129 + 0 . 004 
−0 . 004 0 . 159 + 0 . 022 

−0 . 047 

λδψ – – 31208 . 361 + 4786 . 931 
−6465 . 456 33295 . 353 + 4828 . 483 

−6464 . 454 18 . 628 + 2 . 487 
−3 . 068 120906 . 122 + 20792 . 873 

−30053 . 728 21494 . 286 + 5691 . 486 
−7949 . 972 

l δψ arcsec – 0 . 431 + 0 . 053 
−0 . 047 0 . 405 + 0 . 043 

−0 . 054 – 0 . 381 + 0 . 038 
−0 . 038 0 . 292 + 0 . 035 

−0 . 071 

log E 17956.22 ± 0.23 17963.48 ± 0.35 17913.27 ± 0.33 18082.77 ± 0.56 –

Figure 10. Fourier power spectrum of the perturbations shown in the third 
row of Fig. 8 . The dashed lines are fits using equation ( 28 ) with the 
corresponding parameters listed in Table 5 . The power spectra are computed 
within the mask. 

Table 5. Power-law fits from equation ( 28 ) to the power spectra of the true 
and reconstructed δψ shown in Figs 10 (top part, Section 3.3 ) and 15 (bottom 

part, Section 3.4 ). The XXF and XFF models in the top part of the table give 
identical fits. 

log 10 A β

True δψ (masked) −7.20 ± 0.01 −3.52 ± 0.02 
XFF-curv −6.73 ± 0.03 −1.40 ± 0.03 
XXF/XFF −7.07 ± 0.02 −3.15 ± 0.07 
FFF-smooth −7.87 ± 0.03 −3.42 ± 0.10 

True δψ (masked) −7.21 ± 0.01 −3.43 ± 0.03 
XXX n = 3 −7.19 ± 0.02 −3.29 ± 0.09 
XXF-curv −5.18 ± 0.02 −1.69 ± 0.07 
FFF-complex −7.16 ± 0.02 −3.26 ± 0.09 
FFF-MAP n = 2 −7.46 ± 0.02 −2.75 ± 0.07 
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ig. 10 we show the power spectra of the reconstructions and in
able 5 list the coefficients of the corresponding fits using equa-

ion ( 28 ). The connection between the slope of the power spectrum
nd stronger large-scale correlations is evident: the flattest power
pectrum belongs to the model with curvature regularization, while
NRAS 516, 1347–1372 (2022) 
he slope decreases as the correlation function becomes narrower (or
 δψ becomes smaller), first for the XFF and then for the FFF-smooth
odel. We note, ho we ver, that although XFF gives the value for

he amplitude closest to the truth, its parameters η are fixed to the
rue underlying smooth model (a quite unrealistic scenario), which
eans that the dimensions of the parameter space to explore are

ignificantly fewer compared to the FFF-smooth model. 
The FFF-smooth model has the smooth potential parameters
free, which in principle could absorb part of the perturbations.
o we ver, as discussed in Appendix B , this is not the case. The fitted

mooth potential model is very close to the truth, meaning that any
ifferences between the true total and reconstructed potentials is
ostly due to the δψ . 
A parametric-only, purely smooth model is also e v aluated, which

s obviously insufficient to correctly model the lens, leading to biased
alues of η (see Table C1 ) and reconstructed s , and prominent resid-
als abo v e the noise level (bottom right-hand panel in Fig. 8 ). These
esiduals are lower in amplitude and different from the (unmodelled)
esiduals between the smooth and perturbed data (bottom left-hand
anel in Fig. 8 ), having a correlation coefficient of 0.26. This means
hat the perturbations are absorbed into the smooth model parameters
nd the source to some extent, but not fully (see Bayer 2021 , for a
horough exploration of this effect). This can be seen in the residual
o wer spectrum, sho wn in Fig. 11 , where the ‘unmodelled’ residuals
hat appear on the large scales have significant power (abo v e the
oise) for k < 4 and the smooth model residuals have 2 to 7 times less
ower in the same range, yet still also 2 to 7 times more than the noise.
In Fig. 12 , we show the full non-linear parameter probability

ensities for the FFF-smooth model. In general, the parameters η are
istributed similarly to Fig. 3 but with larger statistical uncertainty.
 systematic bias is introduced in b , whose lower values become
ore probable, because the inclusion of perturbations δψ can now

bsorb some of the o v erall strength of the lens potential. Similarly,
he presence of the perturbations causes x 0 to be offset by one
ixel instead of half, which was the case in Section 3.1 . The same
e generacies are observ ed as in Fig. 3 between the parameters b − q ,
 − γ , q − γ , and θ − φ. The latter two have a bi-modal distribution
ith an extent of roughly ±5 deg . Such small angular offsets
etween the SIE and the external shear can be understood in terms of
he smoothness of the source, which allows for the perturbing field
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Figure 11. Fourier power spectrum of the model residuals shown at the 
bottom row of Fig. 8 . The ‘unmodelled’ residuals correspond to the bottom 

left-hand panel of Fig. 8 and quickly drop to the noise level for k > 4. 
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ψ to make up for the difference and still provide solutions with 
igh probability (low residuals). There are no correlations between 
and the regularization parameters for the source or the potential 

erturbations, neither between the latter two. Ho we v er, we observ e
gain the expected anticorrelation between λs and l s and a similar 
ne between λδψ and l δψ (better shown in Fig. A2 ), i.e. increasing the
 v erall re gularization parameters λ smooths out the reconstructed 
elds, as does increasing the correlation length l in the covariance 
ernels. 

.4 Perturbed lenses and complex sources 

n reality, we expect complex sources to be lensed by non-smooth 
ens potentials. Here we combine the perturbed lens potential from 

he previous section with the complex brightness profile of NGC 

623 (a merger) used as source in Section 3.2 . The resulting
ensed images are shown in the left-hand column of Fig. 13 .
lthough such a lensing scenario could be unrealistically complex 
lensing of merging galaxies is not very probable – it serves 

s an extreme scenario for degeneracies to emerge as a result of
he non-linear behaviour approximated by matrix M r ; from equa- 
ion ( 7 ), perturbed deflection angles are associated with incoming 
ays from a highly structured source, and this information can be 
ost within the finite resolution of the mock data considered in our
xamples. 

We model the system fixing the regularization kernels to the 
est-performing ones, i.e. an exponential kernel for the source (see 
ection 3.2 ) and a Gaussian for the perturbations (see Section 3.3 ).
e reconstruct δψ in the same 30 × 30-pixel grid as before, and 

se n = 3 for the adaptive source grid, unless otherwise stated. For
ach of the models presented in Fig. 13 we either fix (X) or set free
F) each of the three parameter sets η, ( λs , l s ) , ( λδψ , l δψ ) and name it
ccordingly, in the same way as in Section 3.3 . For the fixed values
f the parameters we have: the true values for η (e.g. see Section 3.1
r Table 1 ), l s = 0.15 and l δψ = 0.36, which are the values fitted
o the true source and perturbations as shown in Figs 6 and 9 , λs =
4.031, the mean value from Section 3.2 (see Table 2 ), and λδψ =
6780.1, the mean value from the FFF-smooth model presented in 
ection 3.3 (see Table 4 ). 
In the first part of Fig. 13 , we show two models with all the

arameters fixed to the truth, one with n = 3 and one with n =
, and three models with only one parameter set allowed to vary.
e first note that there is very little difference in the residuals

nd the reconstructed δψ between the fixed models (despite the 
any more source pixels for the case with n = 2) and the one
ith the source parameters free (XFX). Ho we ver, allo wing the δψ 

egularization parameters to vary leads to a worse reconstruction 
nd the residuals increase. This is even more prominent if we
hange the δψ regularization from a Gaussian to a curvature kernel. 
hese δψ solutions have too much structure (low regularization) 
ecause they may be actually o v ercompensating for a low resolution
daptive source grid. In the second part of Fig. 13 , we see that the
esiduals and the δψ reconstruction do not impro v e if we set both the
erturbation and source regularization parameters free (i.e. compare 
odels XXF and XFF). As soon as we allow η to vary then the

esiduals do decrease at the cost of a less smooth δψ reconstruction.
his is regardless of fixing the source regularization parameters –
odels FXF and FFF-complex give very similar results. Ho we ver, 

he adaptive grid resolution affects the residuals: after fixing all 
arameters to the MAP values from the FFF-complex model, we 
et n = 2 and although the δψ reconstruction does not impro v e too
uch, the residuals do (see also Fig. 16 ), in particular, the prominent

ositive residuals due north with respect to the lens in the models
XF and FFF-complex considerably decrease. This is most likely 
ue to the more degrees of freedom available for the source, which
s further supported by a smooth model with n = 1 that absorbs the
erturbations almost down to the noise level. 
Looking at the two-point correlation functions of the reconstructed 

ψ shown in Fig. 14 , we note that the prior and the data lie close
o each other, which accordingly drives the FFF-complex model. 
ncreasing the adaptive grid resolution leads to somewhat stronger 
orrelations on the larger scales and brings the reconstructed δψ 

ven closer to both the prior and the data. Ho we ver, in Fig. 15 , and
rom the fitted coefficients listed in Table 5 , there is a remarkable
greement between the power spectrum of the FFF-complex model 
all the parameters free) and the true δψ . The same holds for the
econstructed δψ of the XXX n = 3 model that has all the parameters
xed to their true values. Hence, despite their different appearance 
see the third row of panels in Fig. 13 ) the reconstructed δψ of the
FF-complex (and XXX n = 3) model have an almost identical
ower spectrum to the truth. We also note that the residual power
pectrum of the FFF-complex and the XXX n = 3 models, shown in
ig. 16 , is very similar, with both models being abo v e the noise in the
mall scales ( k < 5). Curvature regularization is clearly a bad prior
or the GRF δψ as it leads to prominent residuals, even more than the
ifference between the unmodelled perturbed and unperturbed mock 
ystems (see Fig. 16 ), and more extreme values of the reconstructed
ψ (see Fig. 15 and Table 5 ). Completely ignoring the existence of
ny perturbations and modelling the system with a purely smooth 
odel with n = 1 can reach the noise level (see Fig. 16 ). This

s clearly a biased solution that could model away substructure or
eviations from the smooth potential. 
In Fig. 12 we compare the full non-linear parameter probability 

ensities of the FFF-complex model presented here to the FFF- 
mooth model presented in Section 3.3 . Its MAP and mean parameter
alues, and the 68 per cent confidence intervals are listed in Tables 3
nd 4 . The two models are actually the same but applied to different
ata, i.e. with a difference source light profile. We can observe
hree main characteristics of the distributions: (i) smaller statistical 
ncertainties, (ii) larger systematic biases, and (iii) fragmentation 
f the probability surfaces, with various local maxima separated 
y valleys and saddles, given rise to a complex parameter space
onfiguration. The latter reflects the complex and degenerate under- 
ying lens potential perturbations and source brightness profile. The 
mooth lens potential parameters η are correlated in the same way as
efore but the biases are more significant. The SIE potential strength
MNRAS 516, 1347–1372 (2022) 
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Figure 12. Same as Fig. 3 , including the perturbation parameters λδψ , g δψ , for the FFF-smooth (blue) and FFF-complex (red) models, described in Sections 3.3 
and 3.4 , respectively. The two models are actually the same and have the same free parameters, i.e. the smooth potential and regularization parameters for the source 
and the potential perturbations, but applied to mock data with different source light profiles. The corresponding mean values and 68 per cent confidence intervals 
are given in Table 4 . A separate, zoomed-in version of this plot for each model is shown in Figs A2 and A3 , which show the shape of the 2D distributions better. 
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 is pushed to e ven lo wer v alues as the δψ are no w stronger (e.g.

ompare the reconstructed MAP perturbations between the FFF-
mooth and the FFF-complex models in Figs 8 and 13 , respectively),
 0 and y 0 are offset by approx. 1 pixel, and q and γ lie several σ
urther than their true values. Only the angles θ and φ are not biased
nd are in fact less degenerate than the FFF-smooth model, i.e. their
istributions are not bi-modal anymore. This is because of the more
etailed structure in the source that cannot be accounted for well
y the perturbing field δψ for tilted smooth potentials. All of the
e gularization parameters hav e broader distributions e xcept λδψ that
s more narrowly distributed around values 3-4 times smaller than
NRAS 516, 1347–1372 (2022) 
he FFF-smooth model. This means that more structured and larger
n amplitude δψ reconstructions are expected, which is indeed the
ase as shown in Fig. 13 . A very strong anticorrelation is observed
etween the regularization strengths, λ, and correlation lengths, l ,
n the covariance kernels for both the source and the perturbations.
inally, the complex probability surfaces between the source and
otential perturbation regularization parameters (see also Fig. A3 )
ean that the two are quite degenerate. The smaller values of λδψ in

ombination with the broader l s distribution towards higher values
ndicate that the complexity of the source brightness is absorbed by
he potential perturbations. 
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Figure 13. Same as Fig. 8 for NGC 2623. The bottom left-hand panel shows the difference between the perturbed (top left-hand panel) and unperturbed systems 
(top left-hand panel of Fig. 5 ). We list the free parameters of each model in the parenthesis next to its name at the top (see Section 3.4 for details). 
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 DISCUSSION  

igher order statistical properties of the brightness profiles of 
ravitationally lensed galaxies can be incorporated in the semi- 
inear inversion technique through regularization priors based on 
hysically moti v ated cov ariance k ernels. In this w ork, we created
ock gravitational lenses using NGC 3982 (a spiral) and NGC 

623 (a merger) as sources, whose covariance is well-described by a 
aussian and exponential cov ariance kernel, respecti vely. We found 

hat these physically moti v ated priors outperform other traditionally 
sed regularization schemes, such as identity and curvature, and we 
an model each system down to the noise level in almost all cases
hile simultaneously a v oiding o v erfitting (some residuals remain in

he case of perturbed potentials). 
Using generic covariance priors comes at the cost of introducing 

dditional non-linear parameters (in this case, the correlation length 
 s ; see equations 25 and 26 ). Our modelling framework can handle
hese new parameters and determine their full probability distribution 
ointly with the other non-linear parameters (e.g. the smooth mass 
odel parameters, η) at the cost of a now denser source covariance
atrix, C s , that needs to be inverted (e.g. see equation 12 ), and

lower convergence due to increasing the dimensions of the non- 
inear parameter space that needs to be explored. Ho we ver, here we
sed logarithmic priors on a wide range of l s , which might be a
onserv ati ve choice. One could use observationally driven estimates 
f l s (or other covariance kernel parameters) derived from populations 
f putative lensed sources, e.g. constructed from samples of observed 
enses, in order to narro w-do wn the parameter space and speed up
c  
he modelling process. In fact, we performed such a test by fixing l s 
 0.21 for NGC 3982, a value well-justified by the observations (see
ig. 6 ), and remodelling the corresponding mock lens, achieving a
uch faster convergence to the same result. 
The quality of the data, viz. high signal-to-noise and resolution, 

lays a major role in finding an acceptable solution for the source,
egardless of the choice of prior, observationally motivated or not, on
he source brightness profile. In the cases examined in Section 3.2 ,
he data are of sufficiently good quality to drive the solution close
o the truth for all tested regularization schemes. For NGC 2623, the
eco v ered l s parameter for the case with an exponential covariance
ernel – the one matching the true source – lies further than 3 σ from
he truth, despite having the highest evidence. The reverse statement, 
iz. whether the use of a (correct) prior becomes more important in
he case of degraded/noisy data, is yet to be systematically explored.
his is particularly rele v ant for upcoming surv e ys, such as Euclid and
SST , which are expected to have lower angular resolution than what
e examined here. Ho we ver, our method does prefer the models with

he correct priors based on the Bayesian evidence, for the adopted
bservational setup. 
Once perturbations to the lensing potential are introduced, we 

eed to approach the problem in a different way. We demonstrated
hat the effect of δψ can be absorbed in the reconstructed source,
specially if the adaptive grid resolution is set to the highest ( n
 1, a common choice), and lead to wrong results on the model

arameters, η, and the source, s . This, in turn, leads to spurious
tructures in the model residuals, unrelated to the original δψ , which
an be misinterpreted as the effect of a perturbing field of mass
MNRAS 516, 1347–1372 (2022) 

art/stac1924_f13a.eps


1366 G. Vernardos and L. V. E. Koopmans 

M

Figure 13. – continued 

Figure 14. Radially averaged two-point correlation functions of the δψ 

reconstructions from the FFF-complex and FFF-MAP n = 2 models (see 
Section 3.4 ). We include the prior (dashed lines), with the l δψ parameter for 
the Gaussian covariance kernel set to its MAP value, i.e. 0.285 (see Table 3 ). 
The true two-point correlation functions of the full GRF (grey circles) and 
the one within the mask (black cirles) are shown, together with a Gaussian 
fit to the latter with l δψ = 0.36 (using equation 26 , dotted black line) and 
equation ( 29 ) with k max set to the diagonal of the 3.5 arcsec-wide image 
(dotted grey line, not a fit). 

s  

H  

m  

b  

Figure 15. Fourier power spectrum of some of the δψ reconstructions shown 
in the third row of Fig. 13 . The dashed lines are fits using equation ( 28 ) with the 
corresponding parameters listed in Table 5 . The power spectra are computed 
within the mask. 
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ubstructure (see also Chatterjee 2019 , for another study on this).
ence, a two-step approach of first running a parametric smooth
odel to constrain η and then modelling the perturbations δψ would

e unreliable (unless lower choices for n are used, e.g. see Bayer
NRAS 516, 1347–1372 (2022) 
021 ). The extent of the abo v e statement for perturbed lenses with
arying δψ properties, as well as concentrated massive substructures,
emains to be explored. 

Attempting to reconstruct the perturbing δψ requires a regularizing
erm (prior) in addition to the one for the source. In contrast to the
ase of smooth potentials, where the data quality is good enough
o drive the source reconstructions to solutions with the desired
tatistical properties regardless of which regularization scheme is
sed (see Fig. 6 ), the data alone are not sufficient and the form of
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Figure 16. Fourier power spectrum of the residuals shown at the bottom 

row of Fig. 13 for the models used in Fig. 15 . The ‘unmodelled’ residuals 
correspond to the bottom left-hand panel of Fig. 13 and drop to the noise 
level for k > 7. 
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egularization/prior seems to play a major role in reconstructing 
ψ . Here we examined specifically the curvature and Gaussian 
ovariance kernels, in connection to our choice of a GRF as the
rue underlying δψ . The traditionally used curvature regularization 
s less flexible as it imposes fixed, long range correlations (see Fig. 9 ),
hich are in fact stronger than they should and irrecoverably lead to
nphysically smooth solutions, seemingly regardless of the quality 
f the data. The covariance of our assumed GRF, ho we ver, can be
ell approximated by a Gaussian kernel (see Fig. 9 ), but in real
alaxies the true covariance of potential perturbations is unknown. 
ore flexibility could be achieved by assuming a covariance kernel 

escribed by a number of free parameters, e.g. a Mat ́ern kernel (e.g.
ertens et al. 2017 ; Vernardos et al. 2020 ), or even a free form

wo-point correlation function. In addition, theoretically justified 
ψ priors could be derived based on dark matter models or N -
ody hydrodynamical simulations. Our method allows for a thorough 
nd quantitativ e e xploration of ho w dif ferent regularization schemes
n the δψ , as well as on the source, can affect the quality of the
econstructions, eventually ranking them by their Bayesian factors. 

In Sections 3.3 and 3.4 we fully model the smooth potential, 
ource, and perturbations in two example cases whose only difference 
s the brightness profile of the source, i.e. the smooth lens potential
nd the perturbative field of δψ remain the same. Our optimization 
trategy (described in Section 2.6 ) works quite well, but the extent
f statistical uncertainty and systematic biases in the reco v ered 
arameters η depend on the complexity of the source brightness 
rofile. In addition, we find a complicated de generac y with the
trength and smoothness of the regularization for the perturbations 
s well. In the case of the smooth source presented in Section 3.3 ,
he reco v ered δψ from the FFF-smooth model match really well 
he shape of the true underlying perturbations but their amplitude 
s underestimated almost by an order of magnitude in comparison 
o the XFF model. This is clearly seen in the power spectra of the
wo δψ solutions shown in Fig. 15 , ho we ver, it should be noted
hat they still have a slope that agrees very well with the truth. In
he case of the complex source presented in Section 3.4 , the power
pectrum of the δψ solution of the FFF-complex model is recovered 
emarkably well, ho we ver, the shape of the actual δψ does not match
ell the underlying truth. In this case, the entire parameter space 
ecomes more structured and degenerate (see Fig. A3 ) and systematic 
iases increase (see Fig. 12 ), which is especially true for the smooth
otential strength, b , that is pushed to lower values. Smoother sources
ecome more compatible with the data and the freedom of the
erturbing δψ is increased (i.e. its smoothness reduced), which leads 
o the latter absorbing the structure of the source. This explains why
he reconstructed δψ from the FFF-complex model in Fig. 13 do not
isually match the true GRF very well although their power spectrum
oes (see Figs 10 , 15 , and Table 5 ). 
The visual differences of the reconstructed δψ compared to the 

ruth (see the FFF-complex and FFF-smooth reconstructions in 
igs 13 and 8 , respectively), could be understood in terms of the
light-constrains-mass’ effect, which we explain here. Within the 
ramework of our method, but also more generally, it is important
o clarify how is δψ constrained where the lensed source brightness, 
nd/or, more precisely, the gradient of the source is low or zero.
bviously, in such areas using equation ( 3 ) to model brightness

esiduals becomes problematic; the D s operator, which holds the 
eri v ati ves of the source at the source plane (deflected) location of
he given image pixel(s), becomes zero. Hence, in order to obtain a
econstruction across the entire field of view (or even within a mask)
t now becomes obvious that the regularization will be important, 
articularly where there is low/no source flux. This is analogous –
ut not exactly – to reconstructing the source brightness on pixels 
hat are not constrained by the data, as could be the case in a fixed
rid model. Taking the realization of the GRF δψ field that we used
s an example (third-row panel in the left of Fig. 8 ), the success
f our reconstructions depends on how much of the source flux
ventually end ups in those crucial areas of the lens plane that have
he largest gradients (largest deflection angles). This could play a 
ole in the more degenerate results of the FFF-complex model and
ts δψ power spectrum amplitude difference with the FFF-smooth 
odel (see Figs 10 , 15 , and Table 5 ). This could be mitigated by

econstructing the δψ within a carefully selected region of the lens 
lane around the lensed source brightness, possibly weighed by the 
alues of the operator D s . Ho we v er, determining the e xtent of this
light-constrains-mass’ area may introduce another possible source 
f de generac y: the gradient of δψ , which is in fact the deflection
ngle, also enters equation ( 3 ), and for an y pix el with some given
ensed source brightness, regions having the same gradient, e.g. large 
ensity differences that lie further away or smaller density differences 
eing closer, can have the same effect. 

 C O N C L U S I O N S  

e explored the effect of regularization while reconstructing both 
he source and potential perturbations using the semi-linear inversion 
echnique. Below we summarize the conclusions from this work and 
utline future directions of application and impro v ement. 

(i) Physically moti v ated priors for the source galaxies, such 
s Gaussian and exponential kernels, lead to better results than 
raditional choices, such as identity and curvature regularization. 

(ii) Curvature regularization, a traditionally popular choice, is 
undamentally unsuitable as a prior for the GRF δψ perturbations 
hat we examined here. 

(iii) The source alone can absorb the structure created by δψ 

lmost down to the noise, especially if a high resolution adaptive grid
s used (low value of n ). This leads to biased source reconstructions
nd parameters for the smooth potential (see also also Bayer et al.
018 ; Chatterjee 2019 ; Bayer 2021 ). 
(iv) The statistical properties of the δψ , particularly the power 

pectrum, are reco v ered remarkably well, both for smooth and more
omplex sources. 
MNRAS 516, 1347–1372 (2022) 
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Our study constitutes an initial exploration and test of our new
ode implementation, and as such we restricted ourselves to the
our distinct and incrementally more complex examples presented in
ection 3 . The successful outcome of this study enables further and
ore in depth investigations of potential perturbation reconstructions

n lensed systems. We propose, but not limit ourselves to, the
ollowing directions of future research: 

(i) Here we used a specific GRF as the perturbing field, with
pecific amplitude ( ≈13 per cent of the smooth potential) and slope,
hich we believe is an extreme case, pushing the validity of the

pproximation of equation ( 3 ) to its limit. The type (GRF or other),
s well as the associated parameter space of the perturbing field can
e now explored more in depth, for different smooth potentials and
ources. 

(ii) One such case of particular interest would be using isolated
assive perturbers as the perturbing δψ , and determining how the

onclusions of this work apply to it, e.g. comparing to the work of
egetti & Koopmans ( 2009 ). 
(iii) We have identified an interplay between data quality and

riors in determining the best model, which needs to be explored in
oth directions: at which level of resolution and/or signal-to-noise
atio the data are driving the solution and the prior begins to play a
econdary role, and inversely. 

(iv) Our δψ reconstructions away from pixels that contain most of
he lensed source flux are constrained mostly by the prior – what we
escribed as the ‘light-constrains-mass’ effect. A weighed scheme
similar to adaptive regularization – could be devised to suppress

erms in the D s appearing in equation ( 3 ) that are very low or zero. 

Finally, our new implementation of the method, the Very Knotty
enser code, is made publicly available. 15 
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Figure A2. Same as Fig. 12 for the FFF-smooth model with zoomed-in ranges to better show the shape of the 2D distributions. 
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Figure A3. Same as Fig. 12 for the FFF-complex model with zoomed-in ranges to better show the shape of the 2D distributions. 
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PPENDIX  B:  T H E  SMOOTH  POTENTIAL  

BSORBS  T H E  P E RTU R BAT I O N S  TO  A  V E RY  

MALL  EXTENT  

n Fig. B1 , we show the true smooth potential, which is an SIE
ith external shear described by the parameters η introduced in 
ection 3.1 (see also Table 1 ), as well as its MAP fits by the FFF-
mooth and FFF-complex models described in Sections 3.3 and 
.4 , respectively. These two models simultaneously fit the smooth 
otential and reconstruct its perturbations. Both models reco v er 
ccurately the smooth potential parameters as listed in Tables 3 and
 and shown in Fig. B1 . Therefore, the observed differences in the
econstructions of δψ and s are purely due to their fundamental 
onnection through equation ( 3 ) and the choice of regularization. 

Finally, Fig. B2 shows the corresponding power spectra of the 
mooth potentials shown in Fig. B1 . The power spectra are almost
dentical and drop smoothly with wavenumber k . Hence, the fitted
mooth potentials can neither absorb nor introduce any spurious δψ . 
MNRAS 516, 1347–1372 (2022) 
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MNRAS 516, 1347–1372 (2022) 

Figure B1. Contours of the true underlying smooth potential described in 
Section 3.1 , as well as its MAP fits by the FFF-smooth and FFF-complex 
models (see Table 3 ). These models simultaneously fit the smooth potential 
and reconstruct its perturbations δψ . 

Figure B2. Fourier power spectrum of the smooth potentials shown in 
Fig. B1 . 
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PPENDI X  C :  PARAMETER  VA LU E S  O F  A  

M O O  TH  PO  TENTI AL  FITTED  TO  A  

ERTURBED  SYSTEM  

n Table C1 , we list the mean and 68 per cent confidence intervals
f the smooth SIE potential parameters, η, obtained from the
urely smooth models fitted to perturbed systems as presented in
ections 3.3 and 3.4 . 

able C1. Mean values and 68 per cent confidence intervals for the lens
otential ( η) and source regularization parameters ( λs , g s ) for the smooth
odels fitted to the perturbed mocks, as described in Sections 3.3 and 3.4 ,

ompared to the truth. 

ame Units Truth 
SMOOTH 

(Section 3.3 ) 
SMOOTH n = 1 

(Section 3.4 ) 

 arcsec 0.9 0 . 926 + 0 . 002 
−0 . 002 0 . 897 + 0 . 004 

−0 . 004 

 – 0.8 0 . 856 + 0 . 003 
−0 . 003 0 . 803 + 0 . 008 

−0 . 008 

◦ −135 −148 . 153 + 1 . 036 
−0 . 754 −136 . 765 + 0 . 012 

−0 . 012 

 0 arcsec 0 −0 . 021 + 0 . 000 
−0 . 000 −0 . 036 + 0 . 001 

−0 . 001 

 0 arcsec 0 0 . 019 + 0 . 003 
−0 . 002 0 . 031 + 0 . 001 

−0 . 001 

– 0.03 0 . 056 + 0 . 000 
−0 . 000 0 . 039 + 0 . 002 

−0 . 002 

◦ −40 −36 . 599 + 0 . 851 
−1 . 151 −42 . 405 + 0 . 628 

−0 . 628 

s – – 11 . 181 + 1 . 020 
−1 . 020 71 . 368 + 15 . 930 

−15 . 930 

 s arcsec – 0 . 175 + 0 . 007 
−0 . 007 0 . 062 + 0 . 049 

−0 . 049 
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