Convolutional Neural Networks (ConvNets) are one of the most promising
methods for identifying strong gravitational lens candidates in survey data. We
present two ConvNet lens-finders which we have trained with a dataset composed
of real galaxies from the Kilo Degree Survey (KiDS) and simulated lensed
sources. One ConvNet is trained with single \textit{r}-band galaxy images,
hence basing the classification mostly on the morphology. While the other
ConvNet is trained on \textit{g-r-i} composite images, relying mostly on
colours and morphology. We have tested the ConvNet lens-finders on a sample of
21789 Luminous Red Galaxies (LRGs) selected from KiDS and we have analyzed and
compared the results with our previous ConvNet lens-finder on the same sample.
The new lens-finders achieve a higher accuracy and completeness in identifying
gravitational lens candidates, especially the single-band ConvNet. Our analysis
indicates that this is mainly due to improved simulations of the lensed
sources. In particular, the single-band ConvNet can select a sample of lens
candidates with ∼40% purity, retrieving 3 out of 4 of the confirmed
gravitational lenses in the LRG sample. With this particular setup and limited
human intervention, it will be possible to retrieve, in future surveys such as
Euclid, a sample of lenses exceeding in size the total number of currently
known gravitational lenses.Comment: 16 pages, 10 figures. Accepted for publication in MNRA