39 research outputs found

    The Dynamics of Plant-Mediated Sediment Oxygenation in Spartina anglica Rhizospheres—a Planar Optode Study

    Get PDF
    Belowground sediment oxygenation in rhizospheres of wetland plants promotes nutrient uptake, serve as protection against toxic reduced compounds and play an important role in wetland nutrient cycling. The presence of ~1.5-mm-wide oxic zones around roots of the intertidal marsh grass Spartina anglica was demonstrated below the sediment surface using planar optode technology recording 2D images of the sediment oxygen distribution. Oxic root zones were restricted to the root tips stretching up to 16 mm along the roots with an oxygen concentration up to 85 μmol L−1 detected at the root surface. Radial oxygen loss across the root surface ranged from 250 to 300 nmol m−2 s−1, which is comparable to other wetland plants. During air exposure of the aboveground biomass, atmospheric oxygen was the primary source for belowground oxygen transport, and light availability only had a minor effect on the belowground sediment oxygenation. During inundations completely submerging the aboveground biomass cutting off access to atmospheric oxygen, oxic root zones diminished significantly in the light and were completely eliminated in darkness. Within the time frame of a normal tidal inundation (~1.5 h), photosynthetic oxygen production maintained the presence of oxic root zones in light, whereas oxic root zones were eliminated within 1 h in darkness. The results show that the sediment oxygenation in Spartina anglica rhizospheres is temporally dynamic as well as spatially variable along the roots

    Salt marsh ecosystem biogeochemical responses to nutrient enrichment : a paired 15N tracer study

    Get PDF
    Author Posting. © Ecological Society of America, 2009. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecology 90 (2009): 2535-2546, doi:10.1890/08-1051.1.We compared processing and fate of dissolved NO3− in two New England salt marsh ecosystems, one receiving natural flood tide concentrations of 1–4 μmol NO3−/L and the other receiving experimentally fertilized flood tides containing 70–100 μmol NO3−/L. We conducted simultaneous 15NO3− (isotope) tracer additions from 23 to 28 July 2005 in the reference (8.4 ha) and fertilized (12.4 ha) systems to compare N dynamics and fate. Two full tidal cycles were intensively studied during the paired tracer additions. Resulting mass balances showed that essentially 100% (0.48–0.61 mol NO3-N·ha−1·h−1) of incoming NO3− was assimilated, dissimilated, sorbed, or sedimented (processed) within a few hours in the reference system when NO3− concentrations were 1.3–1.8 μmol/L. In contrast, only 50–60% of incoming NO3− was processed in the fertilized system when NO3− concentrations were 84–96 μmol/L; the remainder was exported in ebb tidewater. Gross NO3− processing was 40 times higher in the fertilized system at 19.34–24.67 mol NO3-N·ha−1·h−1. Dissimilatory nitrate reduction to ammonium was evident in both systems during the first 48 h of the tracer additions but <1% of incoming 15NO3− was exported as 15NH4+. Nitrification rates calculated by 15NO3− dilution were 6.05 and 4.46 mol·ha−1·h−1 in the fertilized system but could not be accurately calculated in the reference system due to rapid (<4 h) NO3− turnover. Over the five-day paired tracer addition, sediments sequestered a small fraction of incoming NO3−, although the efficiency of sequestration was 3.8% in the reference system and 0.7% in the fertilized system. Gross sediment N sequestration rates were similar at 13.5 and 12.6 mol·ha−1·d−1, respectively. Macrophyte NO3− uptake efficiency, based on tracer incorporation in aboveground tissues, was considerably higher in the reference system (16.8%) than the fertilized system (2.6%), although bulk uptake of NO3− by plants was lower in the reference system (1.75 mol NO3−·ha−1·d−1) than the fertilized system (10 mol NO3−·ha−1·d−1). Nitrogen processing efficiency decreased with NO3− load in all pools, suggesting that the nutrient processing capacity of the marsh ecosystem was exceeded in the fertilized marsh.This work was funded by National Science Foundation Grant DEB 0213767 and OCE 9726921

    Microbial community composition in sediments resists perturbation by nutrient enrichment

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in The ISME Journal 5 (2011): 1540–1548, doi:10.1038/ismej.2011.22.Functional redundancy in bacterial communities is expected to allow microbial assemblages to survive perturbation by allowing continuity in function despite compositional changes in communities. Recent evidence suggests, however, that microbial communities change both composition and function as a result of disturbance. We present evidence for a third response: resistance. We examined microbial community response to perturbation caused by nutrient enrichment in salt marsh sediments using deep pyrosequencing of 16S rRNA and functional gene microarrays targeting the nirS gene. Composition of the microbial community, as demonstrated by both genes, was unaffected by significant variations in external nutrient supply, despite demonstrable and diverse nutrient–induced changes in many aspects of marsh ecology. The lack of response to external forcing demonstrates a remarkable uncoupling between microbial composition and ecosystem-level biogeochemical processes and suggests that sediment microbial communities are able to resist some forms of perturbation.Funding for this research came from NSF(DEB-0717155 to JEH, DBI-0400819 to JLB). Support for the sequencing facility came from NIH and NSF (NIH/NIEHS-P50-ES012742-01 and NSF/OCE 0430724-J Stegeman PI to HGM and MLS, and WM Keck Foundation to MLS). Salary support provided from Princeton University Council on Science and Technology to JLB. Support for development of the functional gene microarray provided by NSF/OCE99-081482 to BBW. The Plum Island fertilization experiment was funded by NSF (DEB 0213767 and DEB 0816963)

    Nitrogen-limited mangrove ecosystems conserve N through dissimilatory nitrate reduction to ammonium

    Get PDF
    Earlier observations in mangrove sediments of Goa, India have shown denitrification to be a major pathway for N loss1. However, percentage of total nitrate transformed through complete denitrification accounted for <0–72% of the pore water nitrate reduced. Here, we show that up to 99% of nitrate removal in mangrove sediments is routed through dissimilatory nitrate reduction to ammonium (DNRA). The DNRA process was 2x higher at the relatively pristine site Tuvem compared to the anthropogenically-influenced Divar mangrove ecosystem. In systems receiving low extraneous nutrient inputs, this mechanism effectively conserves and re-circulates N minimizing nutrient loss that would otherwise occur through denitrification. In a global context, the occurrence of DNRA in mangroves has important implications for maintaining N levels and sustaining ecosystem productivity. For the first time, this study also highlights the significance of DNRA in buffering the climate by modulating the production of the greenhouse gas nitrous oxide

    Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment

    Get PDF
    The oxidation of ammonia plays a significant role in the transformation of fixed nitrogen in the global nitrogen cycle. Autotrophic ammonia oxidation is known in three groups of microorganisms. Aerobic ammonia-oxidizing bacteria and archaea convert ammonia into nitrite during nitrification. Anaerobic ammonia-oxidizing bacteria (anammox) oxidize ammonia using nitrite as electron acceptor and producing atmospheric dinitrogen. The isolation and cultivation of all three groups in the laboratory are quite problematic due to their slow growth rates, poor growth yields, unpredictable lag phases, and sensitivity to certain organic compounds. Culture-independent approaches have contributed importantly to our understanding of the diversity and distribution of these microorganisms in the environment. In this review, we present an overview of approaches that have been used for the molecular study of ammonia oxidizers and discuss their application in different environments

    The Dynamics of Plant-Mediated Sediment Oxygenation in Spartina anglica Rhizospheres—a Planar Optode Study

    Get PDF
    Belowground sediment oxygenation in rhizospheres of wetland plants promotes nutrient uptake, serve as protection against toxic reduced compounds and play an important role in wetland nutrient cycling. The presence of ~1.5-mm-wide oxic zones around roots of the intertidal marsh grass Spartina anglica was demonstrated below the sediment surface using planar optode technology recording 2D images of the sediment oxygen distribution. Oxic root zones were restricted to the root tips stretching up to 16 mm along the roots with an oxygen concentration up to 85 μmol L−1 detected at the root surface. Radial oxygen loss across the root surface ranged from 250 to 300 nmol m−2 s−1, which is comparable to other wetland plants. During air exposure of the aboveground biomass, atmospheric oxygen was the primary source for belowground oxygen transport, and light availability only had a minor effect on the belowground sediment oxygenation. During inundations completely submerging the aboveground biomass cutting off access to atmospheric oxygen, oxic root zones diminished significantly in the light and were completely eliminated in darkness. Within the time frame of a normal tidal inundation (~1.5 h), photosynthetic oxygen production maintained the presence of oxic root zones in light, whereas oxic root zones were eliminated within 1 h in darkness. The results show that the sediment oxygenation in Spartina anglica rhizospheres is temporally dynamic as well as spatially variable along the roots

    The multi fiber optode (MuFO): A novel system for simultaneous analysis of multiple fiber optic oxygen sensors

    No full text
    A novel system for simultaneous operation of multiple fiber optic oxygen sensors (optodes) is described and characterized. The system is based on an array of one hundred several meter long freely positionable polymer optical fibers with an oxygen sensitive luminophore immobilized at the sensing end of each fiber. The opposite ends of the fiber optodes are fixed in a 10 × 10 matrix and placed in front of a CCD camera and a LED-light source. Oxygen measurements are conducted by simultaneous excitation of all optodes with the LEDs followed by simultaneous lifetime imaging of the one hundred fiber optodes with the camera. Automated digital image analysis allows for calculation of the luminescence lifetime of each fiber optode individually, which can be converted into oxygen partial pressures. The multi fiber optode (MuFO) system had an overall accuracy of 1% when tested at fixed temperatures and 5% when calibrated over a temperature range from 2 to 32 °C and an average 90% response time of 16 s. The system had an average precision of 0.2% air saturation and an average detection limit of 0.1% air saturation. The MuFO system can be adapted for trace level oxygen measurements and for other analytes such as pH, CO2, temperature and heavy metal ions by using different luminophore coatings and imaging approaches
    corecore