824 research outputs found

    Atomic oxygen degradation of Intelsat 4-type solar array interconnects: Laboratory investigations

    Get PDF
    A Hughes 506 type communication satellite belonging to the Intelsat organization was marooned in low Earth orbit on March 14, 1990, following failure of the Titan third stage to separate properly. The satellite, Intelsat VI, was designed for service in geosynchronous orbit and contains several material configurations which are susceptible to attack by atomic oxygen. Analysis showed the silver foil interconnects in the satellite photovoltaic array to be the key materials issue because the silver is exposed directly to the atomic oxygen ram flux. The results are reported of atomic oxygen degradation testing of Intelsat VI type silver foil interconnects both as virgin material and in a configured solar cell element. Test results indicate that more than 80 pct. of the original thickness of silver in the Intelsat VI solar array interconnects should remain after completion of the proposed Space Shuttle rescue and/or reboost mission

    Myeloid conditioning with c-kit-targeted CAR-T cells enables donor stem cell engraftment

    Get PDF
    We report a novel approach to bone marrow (BM) conditioning using c-kit-targeted chimeric antigen receptor T (c-kit CAR-T) cells in mice. Previous reports using anti-c-kit or anti-CD45 antibody linked to a toxin such as saporin have been promising. We developed a distinctly different approach using c-kit CAR-T cells. Initial studies demonstrated in vitro killing of hematopoietic stem cells by c-kit CAR-T cells but poor expansion in vivo and poor migration of CAR-T cells into BM. Pre-treatment of recipient mice with low-dose cyclophosphamide (125 mg/kg) together with CXCR4 transduction in the CAR-T cells enhanced trafficking to and expansion in BM (\u3c1%-13.1%). This resulted in significant depletion of the BM c-ki

    Assessment of Muscle Activation of Caregivers Performing Dependent Transfers With a Novel Robotic-Assisted Transfer Device Compared With the Hoyer Advance

    Get PDF
    OBJECTIVE: The purpose of this study was to compare muscle activity in caregivers while using a novel robotic assistive transfer device (Strong Arm) to a clinical standard of care (Hoyer Advance). DESIGN: A Quasi-Experimental design was used in which twenty caregivers (33±15 years old) performed transfers with three surfaces (toilet, bench and shower chair) with the Strong Arm and Hoyer Advance. Transfer completion time (sec), peak percentage surface electromyography (EMG) and integrated EMG of the bilateral erector spinae, latissimus dorsi, pectoralis major and anterior deltoid were measured. RESULTS: Caregivers required less transfer time when transferring from wheelchair to surface using the Hoyer Advance (p=.011, f=.39). Lower back: significantly lower pEMG were found using Strong Arm in 50% and for the iEMG in 25% of the cases, with the remaining cases showing no significant differences. Shoulder: significantly lower pEMG were found using Strong Arm in 19% of transfers and lower iEMG was found in 25% of transfers when using the Hoyer Advance, with the remaining cases showing no significant differences. CONCLUSION: While back muscle activation during Strong Arm transfers is statistically, but not clinically, lower, additional features that couple with significantly lower muscle activation make it an alternative to the clinical standard for further research and possible clinical applicability

    Deep Mapping of Small Solar System Bodies with Galactic Cosmic Ray Secondary Particle Showers

    Get PDF
    Galactic cosmic rays rain steadily from all directions onto asteroids and comets. The interaction of these high-energy ions produces a cascade of secondary particles, including muons, which can penetrate the solid interiors of small solar system bodies. Muons, which are produced in abundance in Earth's atmosphere, have been used to image large structures on Earth, including the Great Pyramids and the interior of volcanoes. In this study, we demonstrate that the transmitted flux of muons is sensitive to the interior density structure of asteroids and comets, less than a few hundred meters in diameter. Muonography has the potential to fill a critical gap in our knowledge of the deep interiors of small bodies, providing information needed for planetary defense, in situ resource utilization, and planetary science. We use Monte Carlo codes (MCNPX and FLUKA), which accurately model galactic cosmic ray showers, to explore systematic variations in the production of muons in solid surfaces. Results of these calculations confirm the scaling of muon production in Earth's atmosphere to solid regolith materials, as predicted by a simple, semi-empirical model. Muons are primarily produced in the top meter of the regoliths of asteroids and comets. Their rate of production is over three orders of magnitude lower than in Earth's atmosphere and depends strongly on regolith density. In practice, the use of muonography to characterize the interiors of small solar system bodies must overcome their low rate of production and their dependence on regolith density, which can vary over the surface of asteroids and comets. We show that interior contrast can be resolved using a muon telescope (hodoscope) with about 1 sq m aperture with integration times ranging from hours to weeks. Design concepts for a practical hodoscope that could be deployed in situ or on an orbiting spacecraft, are described. Regolith density within the top meter of an asteroid can be determined from radar observations. A concept for a pilot mission that combines remote radar measurements with in situ muonography of a near-Earth asteroid is presented. Perceived challenges and next steps for the development of the concept are described

    COVID-19-Associated Bifacial Weakness with Paresthesia Subtype of Guillain-Barré Syndrome

    Get PDF
    We report a case of bifacial weakness with paresthesia, a recognized Guillain-Barré syndrome subtype characterized by rapidly progressive facial weakness and paresthesia without ataxia or other cranial neuropathies, which was temporally associated with antecedent coronavirus 2019 (COVID-19). This case highlights a potentially novel but critically important neurologic association of the COVID-19 disease process. Herein, we detail the clinicoradiologic work-up and diagnosis, clinical course, and multidisciplinary medical management of this patient with COVID-19. This case is illustrative of the increasingly recognized but potentially underreported neurologic manifestations of COVID-19, which must be considered and further investigated in this pandemic disease

    Electronics Shielding and Reliability Design Tools

    Get PDF
    It is well known that electronics placement in large-scale human-rated systems provides opportunity to optimize electronics shielding through materials choice and geometric arrangement. For example, several hundred single event upsets (SEUs) occur within the Shuttle avionic computers during a typical mission. An order of magnitude larger SEU rate would occur without careful placement in the Shuttle design. These results used basic physics models (linear energy transfer (LET), track structure, Auger recombination) combined with limited SEU cross section measurements allowing accurate evaluation of target fragment contributions to Shuttle avionics memory upsets. Electronics shielding design on human-rated systems provides opportunity to minimize radiation impact on critical and non-critical electronic systems. Implementation of shielding design tools requires adequate methods for evaluation of design layouts, guiding qualification testing, and an adequate follow-up on final design evaluation including results from a systems/device testing program tailored to meet design requirements
    • …
    corecore