1,106 research outputs found

    LIVESTOCK FUTURES MARKETS AND RATIONAL PRICE FORMATION: EVIDENCE FOR LIVE CATTLE AND LIVE HOGS

    Get PDF
    The efficiency of livestock futures markets continues to receive attention, particularly with regard to their forward pricing or forecasting ability. The purpose of this paper is to present a more general theory that encompasses the forward pricing concept. It is argued that futures contract prices for competitively produced nonstorable commodities, such as live cattle and live hogs, follow a rational formation process. Futures contract prices reflect expected market conditions when contracts are sufficiently close to the delivery month that the supply of the underlying commodity cannot be changed. However, prior to the period when future supplies are relatively fixed, futures contract prices should adjust to reflect the competitive equilibrium, where output price equals average costs of production. Presented evidence suggests that live cattle and live hog futures markets support the rational price formation hypothesis: prices for distant contracts reflect average costs of feeding. Implications for risk management strategies are considered.Demand and Price Analysis, Livestock Production/Industries,

    Atomic oxygen degradation of Intelsat 4-type solar array interconnects: Laboratory investigations

    Get PDF
    A Hughes 506 type communication satellite belonging to the Intelsat organization was marooned in low Earth orbit on March 14, 1990, following failure of the Titan third stage to separate properly. The satellite, Intelsat VI, was designed for service in geosynchronous orbit and contains several material configurations which are susceptible to attack by atomic oxygen. Analysis showed the silver foil interconnects in the satellite photovoltaic array to be the key materials issue because the silver is exposed directly to the atomic oxygen ram flux. The results are reported of atomic oxygen degradation testing of Intelsat VI type silver foil interconnects both as virgin material and in a configured solar cell element. Test results indicate that more than 80 pct. of the original thickness of silver in the Intelsat VI solar array interconnects should remain after completion of the proposed Space Shuttle rescue and/or reboost mission

    A comparison of ground-based and space flight data: Atomic oxygen reactions with boron nitride and silicon nitride

    Get PDF
    The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) have been studied in low Earth orbit (LEO) flight experiments and in a ground-based simulation facility at Los Alamos National Laboratory. Both the in-flight and ground-based experiments employed the materials coated over thin (approx 250 Angstrom) silver films whose electrical resistance was measured in situ to detect penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the in-flight and ground-based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the in-flight or ground-based experiments. The ground-based results show good qualitative correlation with the LEO flight results, thus validating the simulation fidelity of the ground-based facility in terms of reproducing LEO flight results

    Verbena urticifolia L.

    Get PDF
    https://thekeep.eiu.edu/herbarium_specimens_byname/19260/thumbnail.jp

    Verbena urticifolia L.

    Get PDF
    https://thekeep.eiu.edu/herbarium_specimens_byname/19260/thumbnail.jp

    Ionizing Radiation Environment on the International Space Station: Performance vs. Expectations for Avionics and Material

    Get PDF
    The role of structural shielding mass in the design, verification, and in-flight performance of International Space Station (ISS), in both the natural and induced orbital ionizing radiation (IR) environments, is reported. Detailed consideration of the effects of both the natural and induced ionizing radiation environment during ISS design, development, and flight operations has produced a safe, efficient manned space platform that is largely immune to deleterious effects of the LEO ionizing radiation environment. The assumption of a small shielding mass for purposes of design and verification has been shown to be a valid worst-case approximation approach to design for reliability, though predicted dependences of single event effect (SEE) effects on latitude, longitude, SEP events, and spacecraft structural shielding mass are not observed. The Figure of Merit (FOM) method over predicts the rate for median shielding masses of about 10g/cm(exp 2) by only a factor of 3, while the Scott Effective Flux Approach (SEFA) method overestimated by about one order of magnitude as expected. The Integral Rectangular Parallelepiped (IRPP), SEFA, and FOM methods for estimating on-orbit (Single Event Upsets) SEU rates all utilize some version of the CREME-96 treatment of energetic particle interaction with structural shielding, which has been shown to underestimate the production of secondary particles in heavily shielded manned spacecraft. The need for more work directed to development of a practical understanding of secondary particle production in massive structural shielding for SEE design and verification is indicated. In contrast, total dose estimates using CAD based shielding mass distributions functions and the Shieldose Code provided a reasonable accurate estimate of accumulated dose in Grays internal to the ISS pressurized elements, albeit as a result of using worst-on-worst case assumptions (500 km altitude x 2) that compensate for ignoring both GCR and secondary particle production in massive structural shielding

    Myeloid conditioning with c-kit-targeted CAR-T cells enables donor stem cell engraftment

    Get PDF
    We report a novel approach to bone marrow (BM) conditioning using c-kit-targeted chimeric antigen receptor T (c-kit CAR-T) cells in mice. Previous reports using anti-c-kit or anti-CD45 antibody linked to a toxin such as saporin have been promising. We developed a distinctly different approach using c-kit CAR-T cells. Initial studies demonstrated in vitro killing of hematopoietic stem cells by c-kit CAR-T cells but poor expansion in vivo and poor migration of CAR-T cells into BM. Pre-treatment of recipient mice with low-dose cyclophosphamide (125 mg/kg) together with CXCR4 transduction in the CAR-T cells enhanced trafficking to and expansion in BM (\u3c1%-13.1%). This resulted in significant depletion of the BM c-ki
    • …
    corecore