34 research outputs found

    Ethnic differences in body fat distribution among Asian pre-pubertal children: A cross-sectional multicenter study

    Get PDF
    Background Ethnic differences in body fat distribution contribute to ethnic differences in cardiovascular morbidities and diabetes. However few data are available on differences in fat distribution in Asian children from various backgrounds. Therefore, the current study aimed to explore ethnic differences in body fat distribution among Asian children from four countries. Methods A total of 758 children aged 8-10 y from China, Lebanon, Malaysia and Thailand were recruited using a non-random purposive sampling approach to enrol children encompassing a wide BMI range. Height, weight, waist circumference (WC), fat mass (FM, derived from total body water [TBW] estimation using the deuterium dilution technique) and skinfold thickness (SFT) at biceps, triceps, subscapular, supraspinale and medial calf were collected. Results After controlling for height and weight, Chinese and Thai children had a significantly higher WC than their Lebanese and Malay counterparts. Chinese and Thais tended to have higher trunk fat deposits than Lebanese and Malays reflected in trunk SFT, trunk/upper extremity ratio or supraspinale/upper extremity ratio after adjustment for age and total body fat. The subscapular/supraspinale skinfold ratio was lower in Chinese and Thais compared with Lebanese and Malays after correcting for trunk SFT. Conclusions Asian pre-pubertal children from different origins vary in body fat distribution. These results indicate the importance of population-specific WC cut-off points or other fat distribution indices to identify the population at risk of obesity-related health problems

    The sustainable materials roadmap

    Get PDF
    Over the past 150 years, our ability to produce and transform engineered materials has been responsible for our current high standards of living, especially in developed economies. However, we must carefully think of the effects our addiction to creating and using materials at this fast rate will have on the future generations. The way we currently make and use materials detrimentally affects the planet Earth, creating many severe environmental problems. It affects the next generations by putting in danger the future of the economy, energy, and climate. We are at the point where something must drastically change, and it must change now. We must create more sustainable materials alternatives using natural raw materials and inspiration from nature while making sure not to deplete important resources, i.e. in competition with the food chain supply. We must use less materials, eliminate the use of toxic materials and create a circular materials economy where reuse and recycle are priorities. We must develop sustainable methods for materials recycling and encourage design for disassembly. We must look across the whole materials life cycle from raw resources till end of life and apply thorough life cycle assessments (LCAs) based on reliable and relevant data to quantify sustainability. We need to seriously start thinking of where our future materials will come from and how could we track them, given that we are confronted with resource scarcity and geographical constrains. This is particularly important for the development of new and sustainable energy technologies, key to our transition to net zero. Currently 'critical materials' are central components of sustainable energy systems because they are the best performing. A few examples include the permanent magnets based on rare earth metals (Dy, Nd, Pr) used in wind turbines, Li and Co in Li-ion batteries, Pt and Ir in fuel cells and electrolysers, Si in solar cells just to mention a few. These materials are classified as 'critical' by the European Union and Department of Energy. Except in sustainable energy, materials are also key components in packaging, construction, and textile industry along with many other industrial sectors. This roadmap authored by prominent researchers working across disciplines in the very important field of sustainable materials is intended to highlight the outstanding issues that must be addressed and provide an insight into the pathways towards solving them adopted by the sustainable materials community. In compiling this roadmap, we hope to aid the development of the wider sustainable materials research community, providing a guide for academia, industry, government, and funding agencies in this critically important and rapidly developing research space which is key to future sustainability.journal articl

    Studying Evidence Use for Health Policymaking from a Policy Perspective

    Get PDF
    Individuals working within the health sector widely embrace the idea of using evidence to achieve their goals of improving individual and population health. Yet while these actors embrace an ideal form of rational-instrumental evidence use under the banner of ‘evidence based policymaking’, they often struggle to understand when, why, or how evidence is used in policy processes. This chapter sets out the conceptual framework employed in this volume to study the use of evidence within policymaking from a public policy perspective. It explores the importance of both political contestation and institutional context to understand when and how evidence will be used within policy processes. The chapter then outlines the structure of this book and the focus of subsequent chapters, highlighting how each of these talks to these themes

    Comparative in vitro Cytotoxicity Study on Uncoated Magnetic Nanoparticles: Effects on Cell Viability, Cell Morphology, and Cellular Uptake

    No full text
    Magnetic iron oxide nanoparticles (MIONPs) must be biocompatible, and a thorough knowledge on their potential cytotoxicity is crucial for their biomedical applications. However, the detailed study about the effects of iron oxide nanoparticles on cell viability, cell morphology, and cellular uptake of different mammalian cells is still insufficient. In this paper, comparative cytotoxicity study of uncoated magnetite nanoparticles at different concentrations was performed on human cervical cancer cell line (HeLa) and immortalized normal human retinal pigment epithelial cell line (RPE). The size, structure, and magnetic behavior of the MIONPs were characterized using transmission electron microscopy (TEM), X-ray diffractometry (XRD), and vibrating sample magnetometry (VSM) respectively. After 24-hour incubation with the MIONPs, the cell viability was determined by live/dead assay, the cell morphology at high magnification was observed under scanning electron microscopy (SEM), and the cellular uptake of MIONPs was measured under TEM and verified by energydispersive X-ray spectroscopy (EDX) analysis. Our results indicate that the uncoated MIONPs at a high concentration (0.40 mg/ml) were toxic to both HeLa and RPE cells. However, the cytotoxicity of uncoated MIONPs at low concentrations was cell-type specific, and RPE cells were more susceptible to these MIONPs than HeLa cells. The effects of the MIONPs on cell morphology and the nanoparticles uptake also showed different features between these two cell lines. Hence cell type should be taken into consideration in the in vitro cytotoxicity study of uncoated MIONPs. Additionally, it should be noticed that the cell morphological changes and the uptake of nanoparticles can take place even though no toxic effect of these MIONPs at low concentrations was reflected in the traditional cell viability assay.Department of Applied Physic
    corecore