170 research outputs found

    Interaction and efficacy of Keigai-rengyo-to extract and acupuncture in male patients with acne vulgaris: A study protocol for a randomized controlled pilot trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In consideration of patients seeking to use traditional Chinese medicine, an evidence-based potentiality for safe and effective use of herbal medicine and acupuncture in treatment of acne vulgaris has been suggested. However, despite common use of a combination of herbal medicine and acupuncture in clinical practice, the current level of evidence is insufficient to draw a conclusion for an interaction and efficacy of herbal medicine and acupuncture. Therefore, considering these methodological flaws, this study was designed to assess the interaction and efficacy of an available herbal medicine, Keigai-rengyo-to extract (KRTE), and acupuncture for treatment of acne using the 2 Γ— 2 factorial design and the feasibility of a large clinical trial.</p> <p>Methods/Design</p> <p>A randomized, assessor single blinded, 2 Γ— 2 factorial pilot trial will be conducted. Forty four participants with acne vulgaris will be randomized into one of four groups: waiting list group (WL), KRTE only group (KO), acupuncture only group (AO), and KRTE and acupuncture combined treatment group (KA). After randomization, a total of 8 sessions of acupuncture treatment will be performed twice a week in the AO- and KA groups, respectively. Patients in the KO- and KA groups will be prescribed KRTE 3 times a day at a dose of 7.4 g after meals for 4 weeks. The following outcome measurements will be used in examination of subjects: the mean percentage change and the count change of inflammatory and non-inflammatory acne lesions, the Skindex 29, visual analogue scale (VAS) and investigator global assessment (IGA) from baseline to the end of the trial.</p> <p>Trial Registration</p> <p>The trial is registered with the Clinical Research Information Service (CRiS), Republic of Korea: KCT0000071.</p

    Outcome in recurrent head neck cancer treated with salvage-IMRT

    Get PDF
    BACKGROUND: Recurrent head neck cancer (rHNC) is a known unfavourable prognostic condition. The purpose of this work was to analyse our rHNC subgroup treated with salvage-intensity modulated radiation therapy (IMRT) for curable recurrence after initial surgery alone. Patients Between 4/2003-9/2008, 44 patients with squamous cell rHNC were referred for IMRT, mean/median 33/21 (3-144) months after initial surgery. None had prior head neck radiation. 41% underwent definitive, 59% postoperative IMRT (66-72.6Gy). 70% had simultaneous chemotherapy. METHODS: Retrospective analysis of the outcome following salvage IMRT in rHNC patients was performed. RESULTS: After mean/median 25/21 months (3-67), 22/44 (50%) patients were alive with no disease; 4 (9%) were alive with disease. 18 patients (41%) died of disease. Kaplan Meier 2-year disease specific survival (DSS), disease free survival (DFS), local and nodal control rates of the cohort were 59/49/56 and 68%, respectively. Known risk factors (advanced initial pTN, marginal initial resection, multiple recurrences) showed no significant outcome differences. Risk factors and the presence of macroscopic recurrence gross tumor volume (rGTV) in oral cavity patients vs others resulted in statistically significantly lower DSS (30 vs 70% at 2 years, p=0.03). With respect to the assessed unfavourable outcome following salvage treatment, numbers needed to treat to avoid one recurrence with initial postoperative IMRT have, in addition, been calculated. CONCLUSION: A low salvage rate of only ~50% at 2 years was found. Calculated numbers of patients needed to treat with postoperative radiation after initial surgery, in order to avoid recurrence and tumor-specific death, suggest a rather generous use of adjuvant irradiation, usually with simultaneous chemotherapy

    Host-Detrimental Role of Esx-1-Mediated Inflammasome Activation in Mycobacterial Infection

    Get PDF
    The Esx-1 (type VII) secretion system is a major virulence determinant of pathogenic mycobacteria, including Mycobacterium marinum. However, the molecular events and host-pathogen interactions underlying Esx-1-mediated virulence in vivo remain unclear. Here we address this problem in a non-lethal mouse model of M. marinum infection that allows detailed quantitative analysis of disease progression. M. marinum established local infection in mouse tails, with Esx-1-dependent formation of caseating granulomas similar to those formed in human tuberculosis, and bone deterioration reminiscent of skeletal tuberculosis. Analysis of tails infected with wild type or Esx-1-deficient bacteria showed that Esx-1 enhanced generation of proinflammatory cytokines, including the secreted form of IL-1Ξ², suggesting that Esx-1 promotes inflammasome activation in vivo. In vitro experiments indicated that Esx-1-dependent inflammasome activation required the host NLRP3 and ASC proteins. Infection of wild type and ASC-deficient mice demonstrated that Esx-1-dependent inflammasome activation exacerbated disease without restricting bacterial growth, indicating a host-detrimental role of this inflammatory pathway in mycobacterial infection. These findings define an immunoregulatory role for Esx-1 in a specific host-pathogen interaction in vivo, and indicate that the Esx-1 secretion system promotes disease and inflammation through its ability to activate the inflammasome

    Star Formation Rates and Stellar Masses of H-alpha Selected Star-Forming Galaxies at z=0.84: A Quantification of the Downsizing

    Get PDF
    In this work we analyze the physical properties of a sample of 153 star forming galaxies at z~0.84, selected by their H-alpha flux with a NB filter. B-band luminosities of the objects are higher than those of local star forming galaxies. Most of the galaxies are located in the blue cloud, though some objects are detected in the green valley and in the red sequence. After the extinction correction is applied virtually all these red galaxies move to the blue sequence, unveiling their dusty nature. A check on the extinction law reveals that the typical extinction law for local starbursts is well suited for our sample but with E(B-V)_stars=0.55 E(B-V)_gas. We compare star formation rates (SFR) measured with different tracers (H-alpha, UV and IR) finding that they agree within a factor of three after extinction correction. We find a correlation between the ratios SFR_FUV/SFR_H-alpha, SFR_IR/SFR_H-alpha and the EW(H-alpha) (i.e. weighted age) which accounts for part of the scatter. We obtain stellar mass estimations fitting templates to multi-wavelength photometry. The typical stellar mass of a galaxy within our sample is ~10^10 Msun. The SFR is correlated with stellar mass and the specific star formation rate (sSFR) decreases with it, indicating that massive galaxies are less affected by star formation processes than less massive ones. This result is consistent with the downsizing scenario. To quantify this downsizing we estimated the quenching mass M_Q for our sample at z~0.84, finding that it declines from M_Q ~10^12 Msun to M_Q ~8x10^10 Msun at the local Universe.Comment: Accepted for publication in The Astrophysical Journal. 18 pages, 18 figure

    Genetically manipulated phages with improved pH resistance for oral administration in veterinary medicine

    Get PDF
    Orally administered phages to control zoonotic pathogens face important challenges, mainly related to the hostile conditions found in the gastrointestinal tract (GIT). These include temperature, salinity and primarily pH, which is exceptionally low in certain compartments. Phage survival under these conditions can be jeopardized and undermine treatment. Strategies like encapsulation have been attempted with relative success, but are typically complex and require several optimization steps. Here we report a simple and efficient alternative, consisting in the genetic engineering of phages to display lipids on their surfaces. Escherichia coli phage T7 was used as a model and the E. coli PhoE signal peptide was genetically fused to its major capsid protein (10A), enabling phospholipid attachment to the phage capsid. The presence of phospholipids on the mutant phages was confirmed by High Performance Thin Layer Chromatography, Dynamic Light Scattering and phospholipase assays. The stability of phages was analysed in simulated GIT conditions, demonstrating improved stability of the mutant phages with survival rates 102107 pfu.mL1 higher than wild-type phages. Our work demonstrates that phage engineering can be a good strategy to improve phage tolerance to GIT conditions, having promising application for oral administration in veterinary medicine.This work was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684) and under the scope of the Project PTDC/BBB-BSS/6471/2014 (POCI-01-0145-FEDER-016678). Franklin L. Nobrega and Ana Rita Costa acknowledge FCT for grants SFRH/BD/86462/2012 and SFRH/BPD/94648/2013, respectively. Melvin F. Siliakus acknowledges funding from the Biobased Ecologically Balanced Sustainable Industrial Chemistry (BE-BASIC) foundation. Electron microscopy work was performed at the Wageningen Electron Microscopy Centre (WEMC) of Wageningen University

    Local Renyi entropic profiles of DNA sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In a recent report the authors presented a new measure of continuous entropy for DNA sequences, which allows the estimation of their randomness level. The definition therein explored was based on the RΓ©nyi entropy of probability density estimation (pdf) using the Parzen's window method and applied to Chaos Game Representation/Universal Sequence Maps (CGR/USM). Subsequent work proposed a fractal pdf kernel as a more exact solution for the iterated map representation. This report extends the concepts of continuous entropy by defining DNA sequence entropic profiles using the new pdf estimations to refine the density estimation of motifs.</p> <p>Results</p> <p>The new methodology enables two results. On the one hand it shows that the entropic profiles are directly related with the statistical significance of motifs, allowing the study of under and over-representation of segments. On the other hand, by spanning the parameters of the kernel function it is possible to extract important information about the scale of each conserved DNA region. The computational applications, developed in Matlab m-code, the corresponding binary executables and additional material and examples are made publicly available at <url>http://kdbio.inesc-id.pt/~svinga/ep/</url>.</p> <p>Conclusion</p> <p>The ability to detect local conservation from a scale-independent representation of symbolic sequences is particularly relevant for biological applications where conserved motifs occur in multiple, overlapping scales, with significant future applications in the recognition of foreign genomic material and inference of motif structures.</p

    Interstitial cell migration: integrin-dependent and alternative adhesion mechanisms

    Get PDF
    Adhesion and migration are integrated cell functions that build, maintain and remodel the multicellular organism. In migrating cells, integrins are the main transmembrane receptors that provide dynamic interactions between extracellular ligands and actin cytoskeleton and signalling machineries. In parallel to integrins, other adhesion systems mediate adhesion and cytoskeletal coupling to the extracellular matrix (ECM). These include multifunctional cell surface receptors (syndecans and CD44) and discoidin domain receptors, which together coordinate ligand binding with direct or indirect cytoskeletal coupling and intracellular signalling. We review the way that the different adhesion systems for ECM components impact cell migration in two- and three-dimensional migration models. We further discuss the hierarchy of these concurrent adhesion systems, their specific tasks in cell migration and their contribution to migration in three-dimensional multi-ligand tissue environments

    Atg5-Independent Sequestration of Ubiquitinated Mycobacteria

    Get PDF
    Like several other intracellular pathogens, Mycobacterium marinum (Mm) escapes from phagosomes into the host cytosol where it can polymerize actin, leading to motility that promotes spread to neighboring cells. However, only ∼25% of internalized Mm form actin tails, and the fate of the remaining bacteria has been unknown. Here we show that cytosolic access results in a new and intricate host pathogen interaction: host macrophages ubiquitinate Mm, while Mm shed their ubiquitinated cell walls. Phagosomal escape and ubiquitination of Mm occured rapidly, prior to 3.5 hours post infection; at the same time, ubiquitinated Mm cell wall material mixed with host-derived dense membrane networks appeared in close proximity to cytosolic bacteria, suggesting cell wall shedding and association with remnants of the lysed phagosome. At 24 hours post-infection, Mm that polymerized actin were not ubiquitinated, whereas ubiquitinated Mm were found within LAMP-1–positive vacuoles resembling lysosomes. Though double membranes were observed which sequestered Mm away from the cytosol, targeting of Mm to the LAMP-1–positive vacuoles was independent of classical autophagy, as demonstrated by absence of LC3 association and by Atg5-independence of their formation. Further, ubiquitination and LAMP-1 association did not occur with mutant avirulent Mm lacking ESX-1 (type VII) secretion, which fail to escape the primary phagosome; apart from its function in phagosome escape, ESX-1 was not directly required for Mm ubiquitination in macrophages or in vitro. These data suggest that virulent Mm follow two distinct paths in the cytosol of infected host cells: bacterial ubiquitination is followed by sequestration into lysosome-like organelles via an autophagy-independent pathway, while cell wall shedding may allow escape from this fate to permit continued residence in the cytosol and formation of actin tails

    Human Macrophages Infected with a High Burden of ESAT-6-Expressing M. tuberculosis Undergo Caspase-1- and Cathepsin B-Independent Necrosis

    Get PDF
    Mycobacterium tuberculosis (Mtb) infects lung macrophages, which instead of killing the pathogen can be manipulated by the bacilli, creating an environment suitable for intracellular replication and spread to adjacent cells. The role of host cell death during Mtb infection is debated because the bacilli have been shown to be both anti-apoptotic, keeping the host cell alive to avoid the antimicrobial effects of apoptosis, and pro-necrotic, killing the host macrophage to allow infection of neighboring cells. Since mycobacteria activate the NLRP3 inflammasome in macrophages, we investigated whether Mtb could induce one of the recently described inflammasome-linked cell death modes pyroptosis and pyronecrosis. These are mediated through caspase-1 and cathepsin-B, respectively. Human monocyte-derived macrophages were infected with virulent (H37Rv) Mtb at a multiplicity of infection (MOI) of 1 or 10. The higher MOI resulted in strongly enhanced release of IL-1Ξ², while a low MOI gave no IL-1Ξ² response. The infected macrophages were collected and cell viability in terms of the integrity of DNA, mitochondria and the plasma membrane was determined. We found that infection with H37Rv at MOI 10, but not MOI 1, over two days led to extensive DNA fragmentation, loss of mitochondrial membrane potential, loss of plasma membrane integrity, and HMGB1 release. Although we observed plasma membrane permeabilization and IL-1Ξ² release from infected cells, the cell death induced by Mtb was not dependent on caspase-1 or cathepsin B. It was, however, dependent on mycobacterial expression of ESAT-6. We conclude that as virulent Mtb reaches a threshold number of bacilli inside the human macrophage, ESAT-6-dependent necrosis occurs, activating caspase-1 in the process
    • …
    corecore