33 research outputs found

    Activated prostaglandin D2 receptors on macrophages enhance neutrophil recruitment into the lung

    Get PDF
    BackgroundProstaglandin (PG) D2 is an early-phase mediator in inflammation, but its action and the roles of the 2 D-type prostanoid receptors (DPs) DP1 and DP2 (also called chemoattractant receptor–homologous molecule expressed on TH2 cells) in regulating macrophages have not been elucidated to date.ObjectiveWe investigated the role of PGD2 receptors on primary human macrophages, as well as primary murine lung macrophages, and their ability to influence neutrophil action in vitro and in vivo.MethodsIn vitro studies, including migration, Ca2+ flux, and cytokine secretion, were conducted with primary human monocyte-derived macrophages and neutrophils and freshly isolated murine alveolar and pulmonary interstitial macrophages. In vivo pulmonary inflammation was assessed in male BALB/c mice.ResultsActivation of DP1, DP2, or both receptors on human macrophages induced strong intracellular Ca2+ flux, cytokine release, and migration of macrophages. In a murine model of LPS-induced pulmonary inflammation, activation of each PGD2 receptor resulted in aggravated airway neutrophilia, tissue myeloperoxidase activity, cytokine contents, and decreased lung compliance. Selective depletion of alveolar macrophages abolished the PGD2-enhanced inflammatory response. Activation of PGD2 receptors on human macrophages enhanced the migratory capacity and prolonged the survival of neutrophils in vitro. In human lung tissue specimens both DP1 and DP2 receptors were located on alveolar macrophages along with hematopoietic PGD synthase, the rate-limiting enzyme of PGD2 synthesis.ConclusionFor the first time, our results show that PGD2 markedly augments disease activity through its ability to enhance the proinflammatory actions of macrophages and subsequent neutrophil activation

    Double-Stranded RNA Attenuates the Barrier Function of Human Pulmonary Artery Endothelial Cells

    Get PDF
    Circulating RNA may result from excessive cell damage or acute viral infection and can interact with vascular endothelial cells. Despite the obvious clinical implications associated with the presence of circulating RNA, its pathological effects on endothelial cells and the governing molecular mechanisms are still not fully elucidated. We analyzed the effects of double stranded RNA on primary human pulmonary artery endothelial cells (hPAECs). The effect of natural and synthetic double-stranded RNA (dsRNA) on hPAECs was investigated using trans-endothelial electric resistance, molecule trafficking, calcium (Ca2+) homeostasis, gene expression and proliferation studies. Furthermore, the morphology and mechanical changes of the cells caused by synthetic dsRNA was followed by in-situ atomic force microscopy, by vascular-endothelial cadherin and F-actin staining. Our results indicated that exposure of hPAECs to synthetic dsRNA led to functional deficits. This was reflected by morphological and mechanical changes and an increase in the permeability of the endothelial monolayer. hPAECs treated with synthetic dsRNA accumulated in the G1 phase of the cell cycle. Additionally, the proliferation rate of the cells in the presence of synthetic dsRNA was significantly decreased. Furthermore, we found that natural and synthetic dsRNA modulated Ca2+ signaling in hPAECs by inhibiting the sarco-endoplasmic Ca2+-ATPase (SERCA) which is involved in the regulation of the intracellular Ca2+ homeostasis and thus cell growth. Even upon synthetic dsRNA stimulation silencing of SERCA3 preserved the endothelial monolayer integrity. Our data identify novel mechanisms by which dsRNA can disrupt endothelial barrier function and these may be relevant in inflammatory processes

    PGH1, the Precursor for the Anti-Inflammatory Prostaglandins of the 1-series, Is a Potent Activator of the Pro-Inflammatory Receptor CRTH2/DP2

    Get PDF
    Prostaglandin H1 (PGH1) is the cyclo-oxygenase metabolite of dihomo-γ-linolenic acid (DGLA) and the precursor for the 1-series of prostaglandins which are often viewed as “anti-inflammatory”. Herein we present evidence that PGH1 is a potent activator of the pro-inflammatory PGD2 receptor CRTH2, an attractive therapeutic target to treat allergic diseases such as asthma and atopic dermatitis. Non-invasive, real time dynamic mass redistribution analysis of living human CRTH2 transfectants and Ca2+ flux studies reveal that PGH1 activates CRTH2 as PGH2, PGD2 or PGD1 do. The PGH1 precursor DGLA and the other PGH1 metabolites did not display such effect. PGH1 specifically internalizes CRTH2 in stable CRTH2 transfectants as assessed by antibody feeding assays. Physiological relevance of CRTH2 ligation by PGH1 is demonstrated in several primary human hematopoietic lineages, which endogenously express CRTH2: PGH1 mediates migration of and Ca2+ flux in Th2 lymphocytes, shape change of eosinophils, and their adhesion to human pulmonary microvascular endothelial cells under physiological flow conditions. All these effects are abrogated in the presence of the CRTH2 specific antagonist TM30089. Together, our results identify PGH1 as an important lipid intermediate and novel CRTH2 agonist which may trigger CRTH2 activation in vivo in the absence of functional prostaglandin D synthase

    Impaired Rho GTPase activation abrogates cell polarization and migration in macrophages with defective lipolysis

    Get PDF
    Infiltration of monocytes and macrophages into the site of inflammation is critical in the progression of inflammatory diseases such as atherosclerosis. Cell migration is dependent on the continuous organization of the actin cytoskeleton, which is regulated by members of the small Rho GTPase family (RhoA, Cdc42, Rac) that are also important for the regulation of signal transduction pathways. We have recently reported on reduced plaque formation in an atherosclerotic mouse model transplanted with bone marrow from adipose triglyceride lipase-deficient (Atgl−/−) mice. Here we provide evidence that defective lipolysis in macrophages lacking ATGL, the major enzyme responsible for triacylglycerol hydrolysis, favors an anti-inflammatory M2-like macrophage phenotype. Our data implicate an as yet unrecognized principle that insufficient lipolysis influences macrophage polarization and actin polymerization, resulting in impaired macrophage migration. Sustained phosphorylation of focal adhesion kinase [due to inactivation of its phosphatase by elevated levels of reactive oxygen species (ROS)] results in defective Cdc42, Rac1 and RhoA activation and in increased and sustained activation of Rac2. Inhibition of ROS production restores the migratory capacity of Atgl−/− macrophages. Since monocyte and macrophage migration are a prerequisite for infiltrating the arterial wall, our results provide a molecular link between lipolysis and the development of atherosclerosis

    Prostaglandin E-2 suppresses human group 2 innate lymphoid cell function

    No full text
    Background: Group 2 innate lymphoid cells (ILC2s) are involved in the initial phase of type 2 inflammation and can amplify allergic immune responses by orchestrating other type 2 immune cells. Prostaglandin (PG) E-2 is a bioactive lipid that plays protective roles in the lung, particularly during allergic inflammation. Objective: We set out to investigate how PGE(2) regulates human ILC2 function. Methods: The effects of PGE(2) on human ILC2 proliferation and intracellular cytokine and transcription factor expression were assessed by means of flow cytometry. Cytokine production was measured by using ELISA, and real-time quantitative PCR was performed to detect PGE(2) receptor expression. Results: PGE(2) inhibited GATA-3 expression, as well as production of the type 2 cytokines IL-5 and IL-13, from human tonsillar and blood ILC2s in response to stimulation with a combination of IL-25, IL-33, thymic stromal lymphopoietin, and IL-2. Furthermore, PGE(2) downregulated the expression of IL-2 receptor alpha (CD25). In line with this observation, PGE(2) decreased ILC2 proliferation. These effects were mediated by the combined action of E-type prostanoid receptor (EP) 2 and EP4 receptors, which were specifically expressed on ILC2s. Conclusion: Our findings reveal that PGE(2) limits ILC2 activation and propose that selective EP2 and EP4 receptor agonists might serve as a promising therapeutic approach in treating allergic diseases by suppressing ILC2 function

    Cytokines regulate the antigen-presenting characteristics of human circulating and tissue-resident intestinal ILCs

    No full text
    ILCs and T helper cells have been shown to exert bi-directional regulation in mice. However, how crosstalk between ILCs and CD4(+) T cells influences immune function in humans is unknown. Here we show that human intestinal ILCs co-localize with T cells in healthy and colorectal cancer tissue and display elevated HLA-DR expression in tumor and tumor-adjacent areas. Although mostly lacking co-stimulatory molecules ex vivo, intestinal and peripheral blood (PB) ILCs acquire antigen-presenting characteristics triggered by inflammasome-associated cytokines IL-1 beta and IL-18. IL-1 beta drives the expression of HLA-DR and co-stimulatory molecules on PB ILCs in an NF-kappa B-dependent manner, priming them as efficient inducers of cytomegalovirus-specific memory CD4(+) T-cell responses. This effect is strongly inhibited by the anti-inflammatory cytokine TGF-beta. Our results suggest that circulating and tissue-resident ILCs have the intrinsic capacity to respond to the immediate cytokine milieu and regulate local CD4(+) T-cell responses, with potential implications for anti-tumor immunity and inflammation. Murine ILCs can modulate T cell responses in MHCII-dependent manner. Here the authors show that human ILCs process and present antigens and induce T-cell responses upon exposure to IL-1-family cytokines; along with the article by Lehmann et al, this work elucidates how cytokines set context specificity of ILC-T cell crosstalk by regulating ILC antigen presentation.Funding Agencies|Knut and Alice Wallenberg FoundationKnut &amp; Alice Wallenberg Foundation; Swedish Research CouncilSwedish Research Council; Centre for Innovative Medicine; Jonasson center at the Royal Institute of Technology, Sweden; board of research at the Karolinska InstituteKarolinska Institutet; research committee at the Karolinska hospital; German Research Foundation (Deutsche Forschungsgemeinschaft)German Research Foundation (DFG) [RA 2986/1-1]; Swedish Cancer Foundation [130396, 160664, 170082]; Swedish Research CouncilSwedish Research Council [521-2013-2791]; Swedish Society for Medical Research [4-140/2014]; Swedish Foundation for Strategic ResearchSwedish Foundation for Strategic Research [FFL15-0120]; Knut and Alice Wallenberg FoundationKnut &amp; Alice Wallenberg Foundation [4-1198/2016]; EMBO long-term fellowshipEuropean Molecular Biology Organization (EMBO) [ALTF 786-2013]; Karolinska InstitutetKarolinska Institutet; ERC-2013-ADG [341038]</p
    corecore