6 research outputs found

    Epidemiology of intra-abdominal infection and sepsis in critically ill patients: “AbSeS”, a multinational observational cohort study and ESICM Trials Group Project

    Get PDF
    Purpose: To describe the epidemiology of intra-abdominal infection in an international cohort of ICU patients according to a new system that classifies cases according to setting of infection acquisition (community-acquired, early onset hospital-acquired, and late-onset hospital-acquired), anatomical disruption (absent or present with localized or diffuse peritonitis), and severity of disease expression (infection, sepsis, and septic shock). Methods: We performed a multicenter (n = 309), observational, epidemiological study including adult ICU patients diagnosed with intra-abdominal infection. Risk factors for mortality were assessed by logistic regression analysis. Results: The cohort included 2621 patients. Setting of infection acquisition was community-acquired in 31.6%, early onset hospital-acquired in 25%, and late-onset hospital-acquired in 43.4% of patients. Overall prevalence of antimicrobial resistance was 26.3% and difficult-to-treat resistant Gram-negative bacteria 4.3%, with great variation according to geographic region. No difference in prevalence of antimicrobial resistance was observed according to setting of infection acquisition. Overall mortality was 29.1%. Independent risk factors for mortality included late-onset hospital-acquired infection, diffuse peritonitis, sepsis, septic shock, older age, malnutrition, liver failure, congestive heart failure, antimicrobial resistance (either methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, extended-spectrum beta-lactamase-producing Gram-negative bacteria, or carbapenem-resistant Gram-negative bacteria) and source control failure evidenced by either the need for surgical revision or persistent inflammation. Conclusion: This multinational, heterogeneous cohort of ICU patients with intra-abdominal infection revealed that setting of infection acquisition, anatomical disruption, and severity of disease expression are disease-specific phenotypic characteristics associated with outcome, irrespective of the type of infection. Antimicrobial resistance is equally common in community-acquired as in hospital-acquired infection

    Intracranial pressure monitoring in patients with acute brain injury in the intensive care unit (SYNAPSE-ICU): an international, prospective observational cohort study

    No full text
    Background: The indications for intracranial pressure (ICP) monitoring in patients with acute brain injury and the effects of ICP on patients’ outcomes are uncertain. The aims of this study were to describe current ICP monitoring practises for patients with acute brain injury at centres around the world and to assess variations in indications for ICP monitoring and interventions, and their association with long-term patient outcomes. Methods: We did a prospective, observational cohort study at 146 intensive care units (ICUs) in 42 countries. We assessed for eligibility all patients aged 18 years or older who were admitted to the ICU with either acute brain injury due to primary haemorrhagic stroke (including intracranial haemorrhage or subarachnoid haemorrhage) or traumatic brain injury. We included patients with altered levels of consciousness at ICU admission or within the first 48 h after the brain injury, as defined by the Glasgow Coma Scale (GCS) eye response score of 1 (no eye opening) and a GCS motor response score of at least 5 (not obeying commands). Patients not admitted to the ICU or with other forms of acute brain injury were excluded from the study. Between-centre differences in use of ICP monitoring were quantified by using the median odds ratio (MOR). We used the therapy intensity level (TIL) to quantify practice variations in ICP interventions. Primary endpoints were 6 month mortality and 6 month Glasgow Outcome Scale Extended (GOSE) score. A propensity score method with inverse probability of treatment weighting was used to estimate the association between use of ICP monitoring and these 6 month outcomes, independently of measured baseline covariates. This study is registered with ClinicalTrial.gov, NCT03257904. Findings: Between March 15, 2018, and April 30, 2019, 4776 patients were assessed for eligibility and 2395 patients were included in the study, including 1287 (54%) with traumatic brain injury, 587 (25%) with intracranial haemorrhage, and 521 (22%) with subarachnoid haemorrhage. The median age of patients was 55 years (IQR 39–69) and 1567 (65%) patients were male. Considerable variability was recorded in the use of ICP monitoring across centres (MOR 4·5, 95% CI 3·8–4·9 between two randomly selected centres for patients with similar covariates). 6 month mortality was lower in patients who had ICP monitoring (441/1318 [34%]) than in those who were not monitored (517/1049 [49%]; p<0·0001). ICP monitoring was associated with significantly lower 6 month mortality in patients with at least one unreactive pupil (hazard ratio [HR] 0·35, 95% CI 0·26–0·47; p<0·0001), and better neurological outcome at 6 months (odds ratio 0·38, 95% CI 0·26–0·56; p=0·0025). Median TIL was higher in patients with ICP monitoring (9 [IQR 7–12]) than in those who were not monitored (5 [3–8]; p<0·0001) and an increment of one point in TIL was associated with a reduction in mortality (HR 0·94, 95% CI 0·91–0·98; p=0·0011). Interpretation: The use of ICP monitoring and ICP management varies greatly across centres and countries. The use of ICP monitoring might be associated with a more intensive therapeutic approach and with lower 6-month mortality in more severe cases. Intracranial hypertension treatment guided by monitoring might be considered in severe cases due to the potential associated improvement in long-term clinical results. Funding: University of Milano-Bicocca and the European Society of Intensive Care Medicine

    Intracranial pressure monitoring in patients with acute brain injury in the intensive care unit (SYNAPSE-ICU): an international, prospective observational cohort study

    No full text
    Background: The indications for intracranial pressure (ICP) monitoring in patients with acute brain injury and the effects of ICP on patients’ outcomes are uncertain. The aims of this study were to describe current ICP monitoring practises for patients with acute brain injury at centres around the world and to assess variations in indications for ICP monitoring and interventions, and their association with long-term patient outcomes. Methods: We did a prospective, observational cohort study at 146 intensive care units (ICUs) in 42 countries. We assessed for eligibility all patients aged 18 years or older who were admitted to the ICU with either acute brain injury due to primary haemorrhagic stroke (including intracranial haemorrhage or subarachnoid haemorrhage) or traumatic brain injury. We included patients with altered levels of consciousness at ICU admission or within the first 48 h after the brain injury, as defined by the Glasgow Coma Scale (GCS) eye response score of 1 (no eye opening) and a GCS motor response score of at least 5 (not obeying commands). Patients not admitted to the ICU or with other forms of acute brain injury were excluded from the study. Between-centre differences in use of ICP monitoring were quantified by using the median odds ratio (MOR). We used the therapy intensity level (TIL) to quantify practice variations in ICP interventions. Primary endpoints were 6 month mortality and 6 month Glasgow Outcome Scale Extended (GOSE) score. A propensity score method with inverse probability of treatment weighting was used to estimate the association between use of ICP monitoring and these 6 month outcomes, independently of measured baseline covariates. This study is registered with ClinicalTrial.gov, NCT03257904. Findings: Between March 15, 2018, and April 30, 2019, 4776 patients were assessed for eligibility and 2395 patients were included in the study, including 1287 (54%) with traumatic brain injury, 587 (25%) with intracranial haemorrhage, and 521 (22%) with subarachnoid haemorrhage. The median age of patients was 55 years (IQR 39–69) and 1567 (65%) patients were male. Considerable variability was recorded in the use of ICP monitoring across centres (MOR 4·5, 95% CI 3·8–4·9 between two randomly selected centres for patients with similar covariates). 6 month mortality was lower in patients who had ICP monitoring (441/1318 [34%]) than in those who were not monitored (517/1049 [49%]; p<0·0001). ICP monitoring was associated with significantly lower 6 month mortality in patients with at least one unreactive pupil (hazard ratio [HR] 0·35, 95% CI 0·26–0·47; p<0·0001), and better neurological outcome at 6 months (odds ratio 0·38, 95% CI 0·26–0·56; p=0·0025). Median TIL was higher in patients with ICP monitoring (9 [IQR 7–12]) than in those who were not monitored (5 [3–8]; p<0·0001) and an increment of one point in TIL was associated with a reduction in mortality (HR 0·94, 95% CI 0·91–0·98; p=0·0011). Interpretation: The use of ICP monitoring and ICP management varies greatly across centres and countries. The use of ICP monitoring might be associated with a more intensive therapeutic approach and with lower 6-month mortality in more severe cases. Intracranial hypertension treatment guided by monitoring might be considered in severe cases due to the potential associated improvement in long-term clinical results. Funding: University of Milano-Bicocca and the European Society of Intensive Care Medicine

    Antimicrobial Lessons From a Large Observational Cohort on Intra-abdominal Infections in Intensive Care Units

    No full text
    Severe intra-abdominal infection commonly requires intensive care. Mortality is high and is mainly determined by disease-specific characteristics, i.e. setting of infection onset, anatomical barrier disruption, and severity of disease expression. Recent observations revealed that antimicrobial resistance appears equally common in community-acquired and late-onset hospital-acquired infection. This challenges basic principles in anti-infective therapy guidelines, including the paradigm that pathogens involved in community-acquired infection are covered by standard empiric antimicrobial regimens, and second, the concept of nosocomial acquisition as the main driver for resistance involvement. In this study, we report on resistance profiles of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis and Enterococcus faecium in distinct European geographic regions based on an observational cohort study on intra-abdominal infections in intensive care unit (ICU) patients. Resistance against aminopenicillins, fluoroquinolones, and third-generation cephalosporins in E. coli, K. pneumoniae and P. aeruginosa is problematic, as is carbapenem-resistance in the latter pathogen. For E. coli and K. pneumoniae, resistance is mainly an issue in Central Europe, Eastern and South-East Europe, and Southern Europe, while resistance in P. aeruginosa is additionally problematic in Western Europe. Vancomycin-resistance in E. faecalis is of lesser concern but requires vigilance in E. faecium in Central and Eastern and South-East Europe. In the subcohort of patients with secondary peritonitis presenting with either sepsis or septic shock, the appropriateness of empiric antimicrobial therapy was not associated with mortality. In contrast, failure of source control was strongly associated with mortality. The relevance of these new insights for future recommendations regarding empiric antimicrobial therapy in intra-abdominal infections is discussed

    Epidemiology of intra-abdominal infection and sepsis in critically ill patients: “AbSeS”, a multinational observational cohort study and ESICM Trials Group Project

    No full text
    Purpose: To describe the epidemiology of intra-abdominal infection in an international cohort of ICU patients according to a new system that classifies cases according to setting of infection acquisition (community-acquired, early onset hospital-acquired, and late-onset hospital-acquired), anatomical disruption (absent or present with localized or diffuse peritonitis), and severity of disease expression (infection, sepsis, and septic shock). Methods: We performed a multicenter (n = 309), observational, epidemiological study including adult ICU patients diagnosed with intra-abdominal infection. Risk factors for mortality were assessed by logistic regression analysis. Results: The cohort included 2621 patients. Setting of infection acquisition was community-acquired in 31.6%, early onset hospital-acquired in 25%, and late-onset hospital-acquired in 43.4% of patients. Overall prevalence of antimicrobial resistance was 26.3% and difficult-to-treat resistant Gram-negative bacteria 4.3%, with great variation according to geographic region. No difference in prevalence of antimicrobial resistance was observed according to setting of infection acquisition. Overall mortality was 29.1%. Independent risk factors for mortality included late-onset hospital-acquired infection, diffuse peritonitis, sepsis, septic shock, older age, malnutrition, liver failure, congestive heart failure, antimicrobial resistance (either methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, extended-spectrum beta-lactamase-producing Gram-negative bacteria, or carbapenem-resistant Gram-negative bacteria) and source control failure evidenced by either the need for surgical revision or persistent inflammation. Conclusion: This multinational, heterogeneous cohort of ICU patients with intra-abdominal infection revealed that setting of infection acquisition, anatomical disruption, and severity of disease expression are disease-specific phenotypic characteristics associated with outcome, irrespective of the type of infection. Antimicrobial resistance is equally common in community-acquired as in hospital-acquired infection. © 2019, The Author(s)

    Epidemiology of intra-abdominal infection and sepsis in critically ill patients: "AbSeS", a multinational observational cohort study and ESICM Trials Group Project

    No full text
    PurposeTo describe the epidemiology of intra-abdominal infection in an international cohort of ICU patients according to a new system that classifies cases according to setting of infection acquisition (community-acquired, early onset hospital-acquired, and late-onset hospital-acquired), anatomical disruption (absent or present with localized or diffuse peritonitis), and severity of disease expression (infection, sepsis, and septic shock).MethodsWe performed a multicenter (n=309), observational, epidemiological study including adult ICU patients diagnosed with intra-abdominal infection. Risk factors for mortality were assessed by logistic regression analysis.ResultsThe cohort included 2621 patients. Setting of infection acquisition was community-acquired in 31.6%, early onset hospital-acquired in 25%, and late-onset hospital-acquired in 43.4% of patients. Overall prevalence of antimicrobial resistance was 26.3% and difficult-to-treat resistant Gram-negative bacteria 4.3%, with great variation according to geographic region. No difference in prevalence of antimicrobial resistance was observed according to setting of infection acquisition. Overall mortality was 29.1%. Independent risk factors for mortality included late-onset hospital-acquired infection, diffuse peritonitis, sepsis, septic shock, older age, malnutrition, liver failure, congestive heart failure, antimicrobial resistance (either methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, extended-spectrum beta-lactamase-producing Gram-negative bacteria, or carbapenem-resistant Gram-negative bacteria) and source control failure evidenced by either the need for surgical revision or persistent inflammation.ConclusionThis multinational, heterogeneous cohort of ICU patients with intra-abdominal infection revealed that setting of infection acquisition, anatomical disruption, and severity of disease expression are disease-specific phenotypic characteristics associated with outcome, irrespective of the type of infection. Antimicrobial resistance is equally common in community-acquired as in hospital-acquired infection
    corecore