171 research outputs found

    Assessment of the relations between crop yield variability and the onset and intensity of the West African Monsoon

    Get PDF
    Timely information on the onset of rain is essential for effectively adapting to climate variability and increasing the resilience of rain-fed systems. However, defining optimal sowing dates based on the onset of rain has been challenging. We compared and analyzed the West African Monsoon onset according to Raman’s, modified Sivakumar’s, Yamada’s, and Liebmann’s definitions using station data from 13 locations in Senegal from 1981 to 2020. Subsequently, we systematically analyzed the effect of the differently estimated monsoon onsets(WAM-OS) on maize development. To this end, we applied the set of the generated WAM-OS as sowing dates in simulations of maize growth and yields, applying the Agricultural Production Systems sIMulator(APSIM) at 13 locations representing different agroclimatic regions across Senegal. We examined the impact of the sowing dates under variable conditions of soil organic carbon(SOC) and plant available water capacity(PAWC). Our analysis showed statistically significant differences between the WAM-OS dates, rainfall characteristics computed for these, and maize yields simulated using different sowing dates according to the WAM-OS definitions. We found Liebmann’s onset dates were most suitable for both hydrological and agronomic applications since they were characterized by the lowest probabilities of prolonged dry spells after onset, the highest amount of rainfall in the mid-season, and the highest simulated maize yields compared to other onset definitions. Our results highlight the importance of sowing dates and their accurate prediction for improving crop productivity in the study area. We also found SOC and PAWC were important factors that improved maize yields. We recommend improved access to climate information services to help smallholder farmers get timely information that helps them in their sowing decisions and encourage agronomic interventions that improve the SOC level, soil pore volume to retain more water and other soil properties directly(e.g., tillage) and indirectly(suited cropping systems) that contribute to enhancing crop productivity

    Identifying user needs for weather and climate services to enhance resilience to climate shocks in sub-Saharan Africa

    Get PDF
    The vulnerability of social-ecological systems in sub-Saharan Africa (SSA) to climate variability and change means that there is an urgent need to better integrate weather and climate information into societal decision-making processes. Long-term climate adaptation in these regions has received increasing attention, with recent initiatives aiming to increase resilience to climate change at timescales of years to decades. Less focus has been given to weather and short-term climate information. However, users are principally interested in shorter timescales (hours to seasons) where actions can immediately reduce the impacts of severe weather events. Focusing on the priority sectors of agriculture and food security, water and disaster management, this paper uses a systematic literature review approach to analyse 61 empirical case studies drawn from academic literature and projects across SSA. We identify the main users of climate services and outline current practices and reported benefits. Barriers that impede the delivery and uptake of climate services are identified and potential strategies for overcoming them outlined based on the reporting of successful practices. Our findings show that greater capacity building of personnel working for National Meteorological and Hydrological Services and Agricultural Extension staff and reinforcing and sustaining collaboration between different stakeholders (climate scientists, hydrologists, extension workers, farmers and other user groups), are essential factors for improving the uptake and utility of weather and climate services to enhance resilience to climate shocks in SSA

    Exploring the need for developing impact-based forecasting in West Africa

    Get PDF
    While conventional weather forecasts focus on meteorological thresholds for extreme events, Impact-Based Forecasts (IBF) integrate information about the potential severity of weather impacts with their likelihood of occurrence. As IBF provides an indication of local risk, there is an increasing uptake of this approach globally. Despite the vulnerability of West Africa to severe weather, and the potential benefits of such a risk-based approach for informing disaster risk reduction, IBF remains rarely used in this region. To meet this need, three national workshops were held in Ghana, Nigeria and Senegal with forecasters, project researchers and users of Climate Information Services (CIS) from key sectors (e.g. agriculture, water resources, disaster risk reduction). In addition, a more localised district level workshop was held in Northern Ghana to explore needs at a subnational scale in Tamale District. The objectives of these workshops were to evaluate the current use of forecast products provided by National Meteorological and Hydrological Services (NMHSs) and to explore the potential for applying IBF. Findings indicate a recognition that the quality of forecast products provided by NMHSs in West Africa has substantially improved in recent years. However, challenges remain related to user understanding, clarity about forecast uncertainty, insufficient spatial and temporal resolution of forecasts leading to limited trust in forecasts. The workshops identified high demand for weather information related to storms, droughts and heatwaves in all the three countries. Dust storms were identified as having strong potential for IBF application in both Nigeria and Senegal. To increase the uptake of CIS by users in West Africa, NMHSs will need to develop and implement user-tailored IBF in their normal weather forecast approaches and improve communication channels with user communities. There is an urgent need for governments in West Africa to enhance the capacity of NMHSs to incorporate IBF as a routine forecast activity by first establishing a National Framework for Climate Services with user engagement as a key first pillar

    Identifying nootropic drug targets via large-scale cognitive GWAS and transcriptomics

    Get PDF
    Broad-based cognitive deficits are an enduring and disabling symptom for many patients with severe mental illness, and these impairments are inadequately addressed by current medications. While novel drug targets for schizophrenia and depression have emerged from recent large-scale genome-wide association studies (GWAS) of these psychiatric disorders, GWAS of general cognitive ability can suggest potential targets for nootropic drug repurposing. Here, we (1) meta-analyze results from two recent cognitive GWAS to further enhance power for locus discovery; (2) employ several complementary transcriptomic methods to identify genes in these loci that are credibly associated with cognition; and (3) further annotate the resulting genes using multiple chemoinformatic databases to identify “druggable” targets. Using our meta-analytic data set (N = 373,617), we identified 241 independent cognition-associated loci (29 novel), and 76 genes were identified by 2 or more methods of gene identification. Actin and chromatin binding gene sets were identified as novel pathways that could be targeted via drug repurposing. Leveraging our transcriptomic and chemoinformatic databases, we identified 16 putative genes targeted by existing drugs potentially available for cognitive repurposing

    Sex-Dependent Shared and Non-Shared Genetic Architecture Across Mood and Psychotic Disorders

    Get PDF
    BACKGROUND: Sex differences in incidence and/or presentation of schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BIP) are pervasive. Previous evidence for shared genetic risk and sex differences in brain abnormalities across disorders suggest possible shared sex-dependent genetic risk. / METHODS: We conducted the largest to date genome-wide genotype–by–sex (GxS) interaction of risk for these disorders, using 85,735 cases (33,403 SCZ, 19,924 BIP, 32,408 MDD) and 109,946 controls from the Psychiatric Genomics Consortium (PGC) and iPSYCH. / RESULTS: Across disorders, genome-wide significant SNP-by-sex interaction was detected for a locus encompassing NKAIN2 (rs117780815; p=3.2×10−8), that interacts with sodium/potassium-transporting ATPase enzymes implicating neuronal excitability. Three additional loci showed evidence (p<1×10−6) for cross-disorder GxS interaction (rs7302529, p=1.6×10−7; rs73033497, p=8.8×10−7; rs7914279, p=6.4×10−7) implicating various functions. Gene-based analyses identified GxS interaction across disorders (p=8.97×10−7) with transcriptional inhibitor SLTM. Most significant in SCZ was a MOCOS gene locus (rs11665282; p=1.5×10−7), implicating vascular endothelial cells. Secondary analysis of the PGC-SCZ dataset detected an interaction (rs13265509; p=1.1×10−7) in a locus containing IDO2, a kynurenine pathway enzyme with immunoregulatory functions implicated in SCZ, BIP, and MDD. Pathway enrichment analysis detected significant GxS of genes regulating vascular endothelial growth factor (VEGF) receptor signaling in MDD (pFDR<0.05). / CONCLUSIONS: In the largest genome-wide GxS analysis of mood and psychotic disorders to date, there was substantial genetic overlap between the sexes. However, significant sex-dependent effects were enriched for genes related to neuronal development, immune and vascular functions across and within SCZ, BIP, and MDD at the variant, gene, and pathway enrichment levels

    Uncovering the complex genetics of human temperament

    Get PDF
    Experimental studies of learning suggest that human temperament may depend on the molecular mechanisms for associative conditioning, which are highly conserved in animals. The main genetic pathways for associative conditioning are known in experimental animals, but have not been identified in prior genome-wide association studies (GWAS) of human temperament. We used a data-driven machine learning method for GWAS to uncover the complex genotypic-phenotypic networks and environmental interactions related to human temperament. In a discovery sample of 2149 healthy Finns, we identified sets of single-nucleotide polymorphisms (SNPs) that cluster within particular individuals (i.e., SNP sets) regardless of phenotype. Second, we identified 3 clusters of people with distinct temperament profiles measured by the Temperament and Character Inventory regardless of genotype. Third, we found 51 SNP sets that identified 736 gene loci and were significantly associated with temperament. The identified genes were enriched in pathways activated by associative conditioning in animals, including the ERK, PI3K, and PKC pathways. 74% of the identified genes were unique to a specific temperament profile. Environmental influences measured in childhood and adulthood had small but significant effects. We confirmed the replicability of the 51 Finnish SNP sets in healthy Korean (90%) and German samples (89%), as well as their associations with temperament. The identified SNPs explained nearly all the heritability expected in each sample (37-53%) despite variable cultures and environments. We conclude that human temperament is strongly influenced by more than 700 genes that modulate associative conditioning by molecular processes for synaptic plasticity and long-term memory.Peer reviewe
    • 

    corecore