17 research outputs found

    Natural and Nature-Derived Products Targeting Human Coronaviruses

    Get PDF
    The ongoing pandemic of severe acute respiratory syndrome (SARS), caused by the SARS-CoV-2 human coronavirus (HCoV), has brought the international scientific community before a state of emergency that needs to be addressed with intensive research for the discovery of pharmacological agents with antiviral activity. Potential antiviral natural products (NPs) have been discovered from plants of the global biodiversity, including extracts, compounds and categories of compounds with activity against several viruses of the respiratory tract such as HCoVs. However, the scarcity of natural products (NPs) and small-molecules (SMs) used as antiviral agents, especially for HCoVs, is notable. This is a review of 203 publications, which were selected using PubMed/MEDLINE, Web of Science, Scopus, and Google Scholar, evaluates the available literature since the discovery of the first human coronavirus in the 1960s; it summarizes important aspects of structure, function, and therapeutic targeting of HCoVs as well as NPs (19 total plant extracts and 204 isolated or semi-synthesized pure compounds) with anti-HCoV activity targeting viral and non-viral proteins, while focusing on the advances on the discovery of NPs with anti-SARS-CoV-2 activity, and providing a critical perspective

    Extracts from the Mediterranean Food Plants Carthamus lanatus, Cichorium intybus, and Cichorium spinosum Enhanced GSH Levels and Increased Nrf2 Expression in Human Endothelial Cells

    Get PDF
    The Mediterranean diet is considered to prevent several diseases. In the present study, the antioxidant properties of six extracts from Mediterranean plant foods were assessed. The extracts’ chemical composition analysis showed that the total polyphenolic content ranged from 56 to 408 GAE mg/g dw of extract. The major polyphenols identified in the extracts were quercetin,luteolin, caftaric acid, caffeoylquinic acid isomers, and cichoric acid. The extracts showed in vitro high scavenging potencyagainst ABTS•+and O2•−radicals and reducing power activity. Also, the extracts inhibited peroxyl radical-induced cleavage ofDNA plasmids. The three most potent extracts, Cichorium intybus, Carthamus lanatus, and Cichorium spinosum, inhibited OH•-induced mutations in Salmonella typhimurium TA102 cells. Moreover, C. intybus ,C. lanatus, and C. spinosum extracts increased the antioxidant molecule glutathione (GSH) by 33.4, 21.5, and 10.5% at 50μg/ml, respectively, in human endothelialEA.hy926 cells.C. intybusextract was also shown to induce in endothelial cells the transcriptional expression of Nrf2 (the majortranscription factor of antioxidant genes), as well as of antioxidant genes GCLC, GSR, NQO1, and HMOX1. In conclusion, theresults suggested that extracts from edible plants may prevent diseases associated especially with endothelium damag

    Bioactive Metabolites of the Stem Bark of <i>Strychnos aff. darienensis</i> and Evaluation of Their Antioxidant and UV Protection Activity in Human Skin Cell Cultures

    No full text
    The genus Strychnos (Loganiaceae) is well-known as a rich source of various bioactive metabolites. In continuation of our phytochemical studies on plants from Amazonia, we examined Strychnos aff. darienensis, collected in Peru. This species has been traditionally used in South America and is still presently used as a drug by the Yanesha tribe in Peru. Phytochemical investigation of this plant led to the isolation and structure elucidation by &#925;uclear&#924;agnetic Resonance and High Resolution Mass Spectroscopy of 14 compounds that belong to the categories of phenolic acids [p-hydroxybenzoic acid (1) and vanillic acid (2)], flavonoids [luteolin, (3),3-O-methyl quercetin (4), strychnobiflavone (5), minaxin (6) and 3&#8217;,4&#8217;,7-trihydroxy-flavone (7)], lignans [syringaresinol-&#946;-D-glucoside (8), balanophonin (9) and ficusal (10)] and alkaloids [venoterpine (11), 11-methoxyhenningsamine (12), diaboline (13) and 11-methoxy diaboline (14)]. The isolated flavonoids&#8212;a class known for its anti-aging activities&#8212;were further evaluated for their biological activities on normal human skin fibroblasts. Among them, only (6), and to a lesser extent (7), exhibited cytotoxicity at 100 &#181;g/ml. All five flavonoids suppressed intracellularreactive oxygen species (ROS) levels, either basal or following stimulation with hydrogen peroxide or both. Moreover, luteolin and strychnobiflavone protected skin fibroblasts against ultraviolet (UV)-irradiation-induced cell death. The isolated flavonoids could prove useful bioactive ingredients in the cosmetic industry

    An inhibitor-driven study for enhancing the selectivity of indirubin derivatives towards leishmanial Glycogen Synthase Kinase-3 over leishmanial cdc2-related protein kinase 3

    No full text
    BACKGROUND: In search of new antiparasitic agents for overcoming the limitations of current leishmaniasis chemotherapy, we have previously shown that 6-bromoindirubin-3'-oxime (6BIO) and several other 6-substituted analogues of indirubin, a naturally occurring bis-indole present in mollusks and plants, displayed reverse selectivity from the respective mammalian kinases, targeting more potently the leishmanial Cyclin-Dependent Kinase-1 (CDK1) homologue [cdc2-related protein kinase 3 (LCRK3)] over leishmanial Glycogen Synthase Kinase-3 (LGSK-3). This reversal of selectivity in Leishmania parasites compared to mammalian cells makes the design of specific indirubin-based LGSK-3 inhibitors difficult. In this context, the identification of compounds bearing specific substitutions that shift indirubin inhibition towards LGSK-3, previously found to be a potential drug target, over LCRK3 is imperative for antileishmanial targeted drug discovery. METHODS: A new in-house indirubin library, composed of 35 compounds, initially designed to target mammalian kinases (CDKs, GSK-3), was tested against Leishmania donovani promastigotes and intracellular amastigotes using the Alamar blue assay. Indirubins with antileishmanial activity were tested against LGSK-3 and LCRK3 kinases, purified from homologous expression systems. Flow cytometry (FACS) was used to measure the DNA content for cell-cycle analysis and the mode of cell death. Comparative structural analysis of the involved kinases was then performed using the Szmap algorithm. RESULTS: We have identified 7 new indirubin analogues that are selective inhibitors of LGSK-3 over LCRK3. These new inhibitors were also found to display potent antileishmanial activity with GI(50) values of <1.5 μΜ. Surprisingly, all the compounds that displayed enhanced selectivity towards LGSK-3, were 6BIO analogues bearing an additional 3'-bulky amino substitution, namely a piperazine or pyrrolidine ring. A comparative structural analysis of the two aforementioned leishmanial kinases was subsequently undertaken to explain and rationalize the selectivity trend determined by the in vitro binding assays. Interestingly, the latter analysis showed that selectivity could be correlated with differences in kinase solvation thermo dynamics induced by minor sequence variations of the otherwise highly similar ATP binding pockets. CONCLUSIONS: In conclusion, 3'-bulky amino substituted 6-BIO derivatives, which demonstrate enhanced specificity towards LGSK-3, represent a new scaffold for targeted drug development to treat leishmaniasis

    Extracts from the Mediterranean Food Plants Carthamus lanatus, Cichorium intybus, and Cichorium spinosum Enhanced GSH Levels and Increased Nrf2 Expression in Human Endothelial Cells

    No full text
    The Mediterranean diet is considered to prevent several diseases. In the present study, the antioxidant properties of six extracts from Mediterranean plant foods were assessed. The extracts’ chemical composition analysis showed that the total polyphenolic content ranged from 56 to 408 GAE mg/g dw of extract. The major polyphenols identified in the extracts were quercetin, luteolin, caftaric acid, caffeoylquinic acid isomers, and cichoric acid. The extracts showed in vitro high scavenging potency against ABTS•+ and O2•− radicals and reducing power activity. Also, the extracts inhibited peroxyl radical-induced cleavage of DNA plasmids. The three most potent extracts, Cichorium intybus, Carthamus lanatus, and Cichorium spinosum, inhibited OH•-induced mutations in Salmonella typhimurium TA102 cells. Moreover, C. intybus, C. lanatus, and C. spinosum extracts increased the antioxidant molecule glutathione (GSH) by 33.4, 21.5, and 10.5% at 50 μg/ml, respectively, in human endothelial EA.hy926 cells. C. intybus extract was also shown to induce in endothelial cells the transcriptional expression of Nrf2 (the major transcription factor of antioxidant genes), as well as of antioxidant genes GCLC, GSR, NQO1, and HMOX1. In conclusion, the results suggested that extracts from edible plants may prevent diseases associated especially with endothelium damage

    Phytochemical Composition of the Decoctions of Greek Edible Greens (Chórta) and Evaluation of Antioxidant and Cytotoxic Properties

    No full text
    Wild or semi-wild edible greens (ch&oacute;rta) are an integral part of the traditional Greek Mediterranean diet due to their nutritional value, containing various phytonutrients beneficial to human health. Water-based decoctions of ch&oacute;rta are widely consumed in Greek alternative medicine as health promoting agents. This study examined the chemical profile of the decoctions of eight edible plants, Cichorium intybus, C. endivia, C. spinosum, Crepis sancta, Sonchus asper, Carthamus lanatus, Centaurea raphanina, and Amaranthus blitum, by UPLC-ESI-HRMS and HRMS/MS analysis, to determine possibly bioactive constituents. The profiles of the plants from the Asteraceae family are dominated by the presence of phenolic acids and flavonoid derivatives, whereas the A. blitum decoction is rich in triterpene saponins. Interestingly, the Centaurea raphanina decoction was found to be extremely rich in flavanones, particularly in the aglycone pinocembrin. Further phytochemical investigation and fractionation of this extract resulted in the isolation and identification of five compounds: phlorin (1), syringin (2), pinocembrin (3), pinocembroside (4), and pinocembrin-7-O-neohesperidoside (5). The extracts were also tested for their antioxidant and differential cytotoxic activity against tumor cells. C. raphanina was found to be differentially toxic against metastatic tumor cells. In conclusion, we found that Greek edible greens are a rich source of bioactive secondary metabolites and their consumption could contribute to the maintenance of overall health

    Indirubin derivatives are potent and selective anti-Trypanosoma cruzi agents

    No full text
    Current treatment for combatting Chagas disease, a life-threatening illness caused by the kinetoplastid protozoan parasite Trypanosoma cruzi is inadequate, and thus the discovery of new antiparasitic compounds is of prime importance. Previous studies identified the indirubins, a class of ATP kinase inhibitors, as potent growth inhibitors of the related kinetoplastid Leishmania. Herein, we evaluated the inhibitory activity of a series of 69 indirubin analogues screened against T. cruzi trypomastigotes and intracellular amastigotes. Seven indirubins were identified as potent T. cruzi inhibitors (low μΜ, nM range). Cell death analysis of specific compounds [3'oxime-6-bromoindirubin(6-BIO) analogues 10, 11 and 17, bearing a bulky extension on the oxime moiety and one 7 substituted analogue 32], as evaluated by electron microscopy and flow cytometry, showed a different mode of action between compound 32 compared to the three 6-BIO oxime- substituted indirubins, suggesting that indirubins may kill the parasite by different mechanisms dependent on their substitution. Moreover, the efficacy of four compounds that show the most potent anti-parasitic effect in both trypomastigotes and intracellular amastigotes (10, 11, 17, 32), was evaluated in a mouse model of T. cruzi infection. Compound 11 (3ʹpiperazine-6-BIO) displayed the best in vivo efficacy (1/6 mortality, 94.5% blood parasitaemia reduction, 12 dpi) at a dose five times reduced over the reference drug benznidazole (20 mg/kg vs100 mg/kg). We propose 3ʹpiperazine-6-BIO as a potential lead for the development of new treatments of Chagas disease

    One-Step Semisynthesis of Oleacein and the Determination as a 5‑Lipoxygenase Inhibitor

    No full text
    The dialdehydes oleacein (<b>2</b>) and oleocanthal (<b>4</b>) are closely related to oleuropein (<b>1</b>) and ligstroside (<b>3</b>), the two latter compounds being abundant iridoids of <i>Olea europaea</i>. By exploiting oleuropein isolated from the plant leaf extract, an efficient procedure has been developed for a one-step semisynthesis of oleacein under Krapcho decarbomethoxylation conditions. Highlighted is the fact that 5-lipoxygenase is a direct target for oleacein with an inhibitory potential (IC<sub>50</sub>: 2 μM) more potent than oleocanthal (<b>4</b>) and oleuropein (<b>1</b>). This enzyme catalyzes the initial steps in the biosynthesis of pro-inflammatory leukotrienes. Taken together, the methodology presented here offers an alternative solution to isolation or total synthesis for the procurement of oleacein, thus facilitating the further development as a potential anti-inflammatory agent
    corecore