7 research outputs found

    Observation of Quantum Asymmetry in an Aharonov-Bohm Ring

    Full text link
    We have investigated the Aharonov-Bohm effect in a one-dimensional GaAs/GaAlAs ring at low magnetic fields. The oscillatory magnetoconductance of these systems are for the first time systematically studied as a function of density. We observe phase-shifts of π\pi in the magnetoconductance oscillations, and halving of the fundamental h/eh/e period, as the density is varied. Theoretically we find agreement with the experiment, by introducing an asymmetry between the two arms of the ring.Comment: 4 pages RevTex including 3 figures, submitted to Phys. Rev.

    Feshbach projection-operator formalism to resonance scattering on Bargmann-type potentials

    Full text link
    The projection-operator formalism of Feshbach is applied to resonance scattering in a single-channel case. The method is based on the division of the full function space into two segments, internal (localized) and external (infinitely extended). The spectroscopic information on the resonances is obtained from the non-Hermitian effective Hamilton operator HeffH_{\rm eff} appearing in the internal part due to the coupling to the external part. As well known, additional so-called cut-off poles of the SS-matrix appear, generally, due to the truncation of the potential. We study the question of spurious SS matrix poles in the framework of the Feshbach formalism. The numerical analysis is performed for exactly solvable potentials with a finite number of resonance states. These potentials represent a generalization of Bargmann-type potentials to accept resonance states. Our calculations demonstrate that the poles of the SS matrix obtained by using the Feshbach projection-operator formalism coincide with both the complex energies of the physical resonances and the cut-off poles of the SS-matrix.Comment: 12 pages, 9 figure

    Simulations of interference effects in gated two-dimensional ballistic electron systems

    Get PDF
    We present detailed simulations addressing recent electronic interference experiments, where a metallic gate is used to locally modify the Fermi wave-length of the charge carriers. Our numerical calculations are based on a solution of the one-particle Schroedinger equation for a realistic model of the actual sample geometry, including a Poisson equation based determination of the potential due to the gate. The conductance is determined with the multiprobe Landauer-Buettiker formula, and in general we find conductance vs. gate voltage characteristics which closely resemble the experimental traces. A detailed examination based on quantum mechanical streamlines suggests that the simple one-dimensional semiclassical model often used to describe the experiments has only a limited range of validity, and that certain 'unexpected' periodicities should not be assigned any particular significance, they arise due to the complicated multiple scattering processes occurring in certain sample geometries.Comment: 7 pages, 10 embedded figures, higher quality figures available in tif-format (or as a hard copy) from [email protected]

    Conformal and Affine Hamiltonian Dynamics of General Relativity

    Full text link
    The Hamiltonian approach to the General Relativity is formulated as a joint nonlinear realization of conformal and affine symmetries by means of the Dirac scalar dilaton and the Maurer-Cartan forms. The dominance of the Casimir vacuum energy of physical fields provides a good description of the type Ia supernova luminosity distance--redshift relation. Introducing the uncertainty principle at the Planck's epoch within our model, we obtain the hierarchy of the Universe energy scales, which is supported by the observational data. We found that the invariance of the Maurer-Cartan forms with respect to the general coordinate transformation yields a single-component strong gravitational waves. The Hamiltonian dynamics of the model describes the effect of an intensive vacuum creation of gravitons and the minimal coupling scalar (Higgs) bosons in the Early Universe.Comment: 37 pages, version submitted to Gen. Rel. Gra
    corecore