6 research outputs found

    Two Probiotic Candidates of the Genus Psychrobacter Modulate the Immune Response and Disease Resistance after Experimental Infection in Turbot (Scophthalmus maximus, Linnaeus 1758)

    Get PDF
    Probiotic bacteria are a recognized alternative to classical methods of disease prophylaxis and therapy. We tested the effects of their application on the immune reaction in juvenile turbot. To prevent digestion of the probiotics, rectal administration was applied to maximise colonization, by-passing digestion in the stomach. The application of Psychrobacter nivimaris and Psychrobacter faecalis showed beneficial effects on the inflammatory response and disease resistance after infection with the common pathogen Tenacibaculum maritimum. Treatment with P. nivimaris and P. faecalis resulted in 0% and 8% mortalities post-infection, while in the treatment control, an elevated mortality of 20% was observed. In the challenge controls (no infection), no mortalities were observed during the entire experimental period. After an experimental infection, mRNA expression of selected immune markers (mhc II α, il-1β, tcr, tgf β and tnf α) were determined by RT-QPCR at 0, 1 and 5 days post-infection (dpi). At 0 dpi, gene expression was comparable between the treatments and the treatment control, suggesting that probiotics did not act via immune stimulation of the host. At 1 dpi, all genes were up-regulated in the treatment control but not in the probiotic groups, indicating that the infection in probiotic-treated fish developed at a less severe level. At 5 dpi, mRNA expression returned to baseline levels. As a conclusion, the native probiotic candidates P. nivimaris and P. faecalis improved survival, whereas, in the control, mortality increased and expression of the immune markers was up-regulated post infection. This highlights a potential application of P. nivimaris and P. faecalis in disease prophylaxis, but further research is needed.FCT/DAAD Acções Integradas Luso-AlemãsFCT/DAAD Acções Integradas Luso-AlemãsFCTFCTFCTERASMUS+ Traineeship Programme of the European UnionPeer Reviewe

    Data from: Spatiotemporal dynamics of Puumala hantavirus associated with its rodent host, Myodes glareolus

    No full text
    Many viruses significantly impact human and animal health. Understanding the population dynamics of these viruses and their hosts can provide important insights for epidemiology and virus evolution. Puumala virus (PUUV) is a European hantavirus that may cause regional outbreaks of hemorrhagic fever with renal syndrome in humans. Here, we analyzed the spatiotemporal dynamics of PUUV circulating in local populations of its rodent reservoir host, the bank vole (Myodes glareolus) during eight years. Phylogenetic and population genetic analyses of all three genome segments of PUUV showed strong geographical structuring at a very local scale. There was a high temporal turnover of virus strains in the local bank vole populations, but several virus strains persisted through multiple years. Phylodynamic analyses showed no significant changes in the local effective population sizes of PUUV, although vole numbers and virus prevalence fluctuated widely. Microsatellite data demonstrated also a temporally persisting subdivision between local vole populations, but these groups did not correspond to the subdivision in the virus strains. We conclude that restricted transmission between vole populations and genetic drift play important roles in shaping the genetic structure and temporal dynamics of PUUV in its natural host which has several implications for zoonotic risks of the human population

    Spatiotemporal dynamics of Puumala hantavirus associated with its rodent host, Myodes glareolus

    Get PDF
    Many viruses significantly impact human and animal health. Understanding the population dynamics of these viruses and their hosts can provide important insights for epidemiology and virus evolution. Puumala virus (PUUV) is a European hantavirus that may cause regional outbreaks of hemorrhagic fever with renal syndrome in humans. Here, we analyzed the spatiotemporal dynamics of PUUV circulating in local populations of its rodent reservoir host, the bank vole (Myodes glareolus) during eight years. Phylogenetic and population genetic analyses of all three genome segments of PUUV showed strong geographical structuring at a very local scale. There was a high temporal turnover of virus strains in the local bank vole populations, but several virus strains persisted through multiple years. Phylodynamic analyses showed no significant changes in the local effective population sizes of PUUV, although vole numbers and virus prevalence fluctuated widely. Microsatellite data demonstrated also a temporally persisting subdivision between local vole populations, but these groups did not correspond to the subdivision in the virus strains. We conclude that restricted transmission between vole populations and genetic drift play important roles in shaping the genetic structure and temporal dynamics of PUUV in its natural host which has several implications for zoonotic risks of the human population
    corecore