1,727 research outputs found
Abrasive waterjet machining of three-dimensional structures from bulk metallic glasses and comparison with other techniques
Bulk metallic glasses (BMGs) are a promising class of engineering materials, but they can be difficult to machine due to high hardness and a metastable structure. Crystallization due to machining can have negative effects, such as a decreased load-bearing capacity of fabricated parts, and thus should be avoided. Here, a Zr-based BMG was machined using abrasive waterjet (AWJ), electrical discharge, ns-pulsed laser engraving, and conventional dry-milling techniques. Characterization of the processed material indicated that AWJ preserves the amorphous phase and provides the combination of speed and flexibility required to rapidly fabricate small three-dimensional parts, while the other techniques did not achieve these goals. As proof-of-principle, a screw, similar to an orthopedic implant, was rapidly machined from the BMG using AW
How metal films de-wet substrates - identifying the kinetic pathways and energetic driving forces
We study how single-crystal chromium films of uniform thickness on W(110)
substrates are converted to arrays of three-dimensional (3D) Cr islands during
annealing. We use low-energy electron microscopy (LEEM) to directly observe a
kinetic pathway that produces trenches that expose the wetting layer. Adjacent
film steps move simultaneously uphill and downhill relative to the staircase of
atomic steps on the substrate. This step motion thickens the film regions where
steps advance. Where film steps retract, the film thins, eventually exposing
the stable wetting layer. Since our analysis shows that thick Cr films have a
lattice constant close to bulk Cr, we propose that surface and interface stress
provide a possible driving force for the observed morphological instability.
Atomistic simulations and analytic elastic models show that surface and
interface stress can cause a dependence of film energy on thickness that leads
to an instability to simultaneous thinning and thickening. We observe that
de-wetting is also initiated at bunches of substrate steps in two other
systems, Ag/W(110) and Ag/Ru(0001). We additionally describe how Cr films are
converted into patterns of unidirectional stripes as the trenches that expose
the wetting layer lengthen along the W[001] direction. Finally, we observe how
3D Cr islands form directly during film growth at elevated temperature. The Cr
mesas (wedges) form as Cr film steps advance down the staircase of substrate
steps, another example of the critical role that substrate steps play in 3D
island formation
Leading-effect vs. Risk-taking in Dynamic Tournaments: Evidence from a Real-life Randomized Experiment
Two 'order effects' may emerge in dynamic tournaments with information feedback. First, participants adjust effort across stages, which could advantage the leading participant who faces a larger 'effective prize' after an initial victory (leading-effect). Second, participants lagging behind may increase risk at the final stage as they have 'nothing to lose' (risk-taking). We use a randomized natural experiment in professional two-game soccer tournaments where the treatment (order of a stage-specific advantage) and team characteristics, e.g. ability, are independent. We develop an identification strategy to test for leading-effects controlling for risk-taking. We find no evidence of leading-effects and negligible risk-taking effects
Complete-Graph Tensor Network States: A New Fermionic Wave Function Ansatz for Molecules
We present a new class of tensor network states that are specifically
designed to capture the electron correlation of a molecule of arbitrary
structure. In this ansatz, the electronic wave function is represented by a
Complete-Graph Tensor Network (CGTN) ansatz which implements an efficient
reduction of the number of variational parameters by breaking down the
complexity of the high-dimensional coefficient tensor of a
full-configuration-interaction (FCI) wave function. We demonstrate that CGTN
states approximate ground states of molecules accurately by comparison of the
CGTN and FCI expansion coefficients. The CGTN parametrization is not biased
towards any reference configuration in contrast to many standard quantum
chemical methods. This feature allows one to obtain accurate relative energies
between CGTN states which is central to molecular physics and chemistry. We
discuss the implications for quantum chemistry and focus on the spin-state
problem. Our CGTN approach is applied to the energy splitting of states of
different spin for methylene and the strongly correlated ozone molecule at a
transition state structure. The parameters of the tensor network ansatz are
variationally optimized by means of a parallel-tempering Monte Carlo algorithm
Improving XMM-Newton EPIC pn data at low energies: method and application to the Vela SNR
High quantum efficiency over a broad spectral range is one of the main
properties of the EPIC pn camera on-board XMM-Newton. The quantum efficiency
rises from ~75% at 0.2 keV to ~100% at 1 keV, stays close to 100% until 8 keV,
and is still ~90% at 10 keV. The EPIC pn camera is attached to an X-ray
telescope which has the highest collecting area currently available, in
particular at low energies (more than 1400 cm2 between 0.1 and 2.0 keV). Thus,
this instrument is very sensitive to the low-energy X-ray emission. However,
X-ray data at energies below ~0.2 keV are considerably affected by detector
effects, which become more and more important towards the lowest transmitted
energies. In addition to that, pixels which have received incorrect offsets
during the calculation of the offset map at the beginning of each observation,
show up as bright patches in low-energy images. Here we describe a method which
is not only capable of suppressing the contaminations found at low energies,
but which also improves the data quality throughout the whole EPIC pn spectral
range. This method is then applied to data from the Vela supernova remnant.Comment: Proc. SPIE Vol. 5488: Astronomical Telescopes and Instrumentation, UV
- Gamma-Ray Space Telescope Systems, Eds. Guenther Hasinger and Martin J.
Turner, 22-24 June 2004, Glasgow, Scotland United Kingdo
Prognostic impact of acute pulmonary triggers in patients with takotsubo syndrome: new insights from the International Takotsubo Registry
AIMS
Acute pulmonary disorders are known physical triggers of takotsubo syndrome (TTS). This study aimed to investigate prevalence of acute pulmonary triggers in patients with TTS and their impact on outcomes.
METHODS AND RESULTS
Patients with TTS were enrolled from the International Takotsubo Registry and screened for triggering factors and comorbidities. Patients were categorized into three groups (acute pulmonary trigger, chronic lung disease, and no lung disease) to compare clinical characteristics and outcomes. Of the 1670 included patients with TTS, 123 (7%) were identified with an acute pulmonary trigger, and 194 (12%) had a known history of chronic lung disease. The incidence of cardiogenic shock was highest in patients with an acute pulmonary trigger compared with those with chronic lung disease or without lung disease (17% vs. 10% vs. 9%, P = 0.017). In-hospital mortality was also higher in patients with an acute pulmonary trigger than in the other two groups, although not significantly (5.7% vs. 1.5% vs. 4.2%, P = 0.13). Survival analysis demonstrated that patients with an acute pulmonary trigger had the worst long-term outcome (P = 0.002). The presence of an acute pulmonary trigger was independently associated with worse long-term mortality (hazard ratio 2.12, 95% confidence interval 1.33-3.38; P = 0.002).
CONCLUSIONS
The present study demonstrates that TTS is related to acute pulmonary triggers in 7% of all TTS patients, which accounts for 21% of patients with physical triggers. The presence of acute pulmonary trigger is associated with a severe in-hospital course and a worse long-term outcome
Photoswitchable diacylglycerols enable optical control of protein kinase C.
Increased levels of the second messenger lipid diacylglycerol (DAG) induce downstream signaling events including the translocation of C1-domain-containing proteins toward the plasma membrane. Here, we introduce three light-sensitive DAGs, termed PhoDAGs, which feature a photoswitchable acyl chain. The PhoDAGs are inactive in the dark and promote the translocation of proteins that feature C1 domains toward the plasma membrane upon a flash of UV-A light. This effect is quickly reversed after the termination of photostimulation or by irradiation with blue light, permitting the generation of oscillation patterns. Both protein kinase C and Munc13 can thus be put under optical control. PhoDAGs control vesicle release in excitable cells, such as mouse pancreatic islets and hippocampal neurons, and modulate synaptic transmission in Caenorhabditis elegans. As such, the PhoDAGs afford an unprecedented degree of spatiotemporal control and are broadly applicable tools to study DAG signaling
Quasi-free photoproduction of eta-mesons of the neutron
Quasi-free photoproduction of eta-mesons off nucleons bound in the deuteron
has been measured with the CBELSA/TAPS detector for incident photon energies up
to 2.5 GeV at the Bonn ELSA accelerator. The eta-mesons have been detected in
coincidence with recoil protons and recoil neutrons, which allows a detailed
comparison of the quasi-free n(gamma,eta)n and p(gamma,eta)p reactions. The
excitation function for eta-production off the neutron shows a pronounced
bump-like structure at W=1.68 GeV (E_g ~ 1 GeV), which is absent for the
proton.Comment: accepted for publication in Phys. Rev. Let
- …