4,659 research outputs found

    Real-time observation of epitaxial graphene domain reorientation.

    Get PDF
    Graphene films grown by vapour deposition tend to be polycrystalline due to the nucleation and growth of islands with different in-plane orientations. Here, using low-energy electron microscopy, we find that micron-sized graphene islands on Ir(111) rotate to a preferred orientation during thermal annealing. We observe three alignment mechanisms: the simultaneous growth of aligned domains and dissolution of rotated domains, that is, 'ripening'; domain boundary motion within islands; and continuous lattice rotation of entire domains. By measuring the relative growth velocity of domains during ripening, we estimate that the driving force for alignment is on the order of 0.1 meV per C atom and increases with rotation angle. A simple model of the orientation-dependent energy associated with the moiré corrugation of the graphene sheet due to local variations in the graphene-substrate interaction reproduces the results. This work suggests new strategies for improving the van der Waals epitaxy of 2D materials

    Conduction Channels of One-Atom Zinc Contacts

    Get PDF
    We have determined the transmission coefficients of atomic-sized Zn contacts using a new type of breakjunction which contains a whisker as a central bridge. We find that in the last conductance plateau the transport is unexpectedly dominated by a well-transmitting single conduction channel. We explain the experimental findings with the help of a tight-binding model which shows that in an one-atom Zn contact the current proceeds through the 4s and 4p orbitals of the central atom.Comment: revtex4, 5 pages, 5 figure

    Maximum precipitation rates in the southern Blue Ridge Mountains of the southeastern United States

    Get PDF
    Previous studies have identified relationships between annual precipitation and various attributes of the topography, such as elevation and exposure. Many hydrologic and geomorphic phenomena, however, are particularly sensitive to the manner in which the annual precipitation is delivered. Processes such as overland flow and erosion depend strongly on the maximum precipitation rate observed in a given precipitation event. In this study, relationships were identified between the maximum precipitation hourly rates observed in an event and selected topographic and geographic (TOPO/GEOG) attributes of the region. Rainfall events were identified from the hourly precipitation records at 44 stations in the Blue Ridge Mountains, USA, and classified according to the maximum rate of rainfall observed. The frequencies of low, moderate, and high intensity precipitation events were then statistically related to 30 TOPO/GEOG parameters. For the cool season, the strongest relationships were observed between low intensity events and several TOPO/GEOG attributes, especially northwest exposure. For the warm season, low and moderate intensity events exhibited strong relationships with elevation. High intensity events displayed weak to moderate relationships with the distance to the Gulf of Mexico and south exposure

    FitTetra 2.0-improved genotype calling for tetraploids with multiple population and parental data support

    Get PDF
    BackgroundGenetic studies in tetraploids are lagging behind in comparison with studies of diploids as the complex genetics of tetraploids require much more elaborated computational methodologies. Recent advancements in development of molecular techniques and computational tools facilitate new methods for automated, high-throughput genotype calling in tetraploid species. We report on the upgrade of the widely-used fitTetra software aiming to improve its accuracy, which to date is hampered by technical artefacts in the data.ResultsOur upgrade of the fitTetra package is designed for a more accurate modelling of complex collections of samples. The package fits a mixture model where some parameters of the model are estimated separately for each sub-collection. When a full-sib family is analyzed, we use parental genotypes to predict the expected segregation in terms of allele dosages in the offspring. More accurate modelling and use of parental data increases the accuracy of dosage calling. We tested the package on data obtained with an Affymetrix Axiom 60k array and compared its performance with the original version and the recently published ClusterCall tool, showing that at least 20% more SNPs could be called with our updated.ConclusionOur updated software package shows clearly improved performance in genotype calling accuracy. Estimation of mixing proportions of the underlying dosage distributions is separated for full-sib families (where mixture proportions can be estimated from the parental dosages and inheritance model) and unstructured populations (where they are based on the assumption of Hardy-Weinberg equilibrium). Additionally, as the distributions of signal ratios of the dosage classes can be assumed to be the same for all populations, including parental data for some subpopulations helps to improve fitting other populations as well. The R package fitTetra 2.0 is freely available under the GNU Public License as Additional file with this article.</p

    Fidelity balance in quantum operations

    Full text link
    I derive a tight bound between the quality of estimating the state of a single copy of a dd-level system, and the degree the initial state has to be altered in course of this procedure. This result provides a complete analytical description of the quantum mechanical trade-off between the information gain and the quantum state disturbance expressed in terms of mean fidelities. I also discuss consequences of this bound for quantum teleportation using nonmaximally entangled states.Comment: 4 pages, REVTeX. Revised versio

    WZW orientifolds and finite group cohomology

    Full text link
    The simplest orientifolds of the WZW models are obtained by gauging a Z_2 symmetry group generated by a combined involution of the target Lie group G and of the worldsheet. The action of the involution on the target is by a twisted inversion g \mapsto (\zeta g)^{-1}, where \zeta is an element of the center of G. It reverses the sign of the Kalb-Ramond torsion field H given by a bi-invariant closed 3-form on G. The action on the worldsheet reverses its orientation. An unambiguous definition of Feynman amplitudes of the orientifold theory requires a choice of a gerbe with curvature H on the target group G, together with a so-called Jandl structure introduced in hep-th/0512283. More generally, one may gauge orientifold symmetry groups \Gamma = Z_2 \ltimes Z that combine the Z_2-action described above with the target symmetry induced by a subgroup Z of the center of G. To define the orientifold theory in such a situation, one needs a gerbe on G with a Z-equivariant Jandl structure. We reduce the study of the existence of such structures and of their inequivalent choices to a problem in group-\Gamma cohomology that we solve for all simple simply-connected compact Lie groups G and all orientifold groups \Gamma = Z_2 \ltimes Z.Comment: 48+1 pages, 11 figure

    Stochastic evolution of four species in cyclic competition

    Full text link
    We study the stochastic evolution of four species in cyclic competition in a well mixed environment. In systems composed of a finite number NN of particles these simple interaction rules result in a rich variety of extinction scenarios, from single species domination to coexistence between non-interacting species. Using exact results and numerical simulations we discuss the temporal evolution of the system for different values of NN, for different values of the reaction rates, as well as for different initial conditions. As expected, the stochastic evolution is found to closely follow the mean-field result for large NN, with notable deviations appearing in proximity of extinction events. Different ways of characterizing and predicting extinction events are discussed.Comment: 19 pages, 6 figures, submitted to J. Stat. Mec

    Leading-effect vs. Risk-taking in Dynamic Tournaments: Evidence from a Real-life Randomized Experiment

    Get PDF
    Two 'order effects' may emerge in dynamic tournaments with information feedback. First, participants adjust effort across stages, which could advantage the leading participant who faces a larger 'effective prize' after an initial victory (leading-effect). Second, participants lagging behind may increase risk at the final stage as they have 'nothing to lose' (risk-taking). We use a randomized natural experiment in professional two-game soccer tournaments where the treatment (order of a stage-specific advantage) and team characteristics, e.g. ability, are independent. We develop an identification strategy to test for leading-effects controlling for risk-taking. We find no evidence of leading-effects and negligible risk-taking effects

    A sequence of unsharp measurements enabling a real time visualization of a quantum oscillation

    Get PDF
    The normalized state ψ(t)=c1(t)1+c2(t)2\ket{\psi(t)}=c_1(t)\ket{1}+c_2(t)\ket{2} of a single two-level system performs oscillations under the influence of a resonant driving field. It is assumed that only one realization of this process is available. We show that it is possible to approximately visualize in real time the evolution of the system as far as it is given by c2(t)2|c_2(t)|^2. For this purpose we use a sequence of particular unsharp measurements separated in time. They are specified within the theory of generalized measurements in which observables are represented by positive operator valued measures (POVM). A realization of the unsharp measurements may be obtained by coupling the two-level system to a meter and performing the usual projection measurements on the meter only.Comment: 17 pages, 3 figures, accepted for publication in Phys. Rev. A. Some typographical corrections are made and a short treatmeant of the fidelity of our measurements (N-series) is adde

    How metal films de-wet substrates - identifying the kinetic pathways and energetic driving forces

    Full text link
    We study how single-crystal chromium films of uniform thickness on W(110) substrates are converted to arrays of three-dimensional (3D) Cr islands during annealing. We use low-energy electron microscopy (LEEM) to directly observe a kinetic pathway that produces trenches that expose the wetting layer. Adjacent film steps move simultaneously uphill and downhill relative to the staircase of atomic steps on the substrate. This step motion thickens the film regions where steps advance. Where film steps retract, the film thins, eventually exposing the stable wetting layer. Since our analysis shows that thick Cr films have a lattice constant close to bulk Cr, we propose that surface and interface stress provide a possible driving force for the observed morphological instability. Atomistic simulations and analytic elastic models show that surface and interface stress can cause a dependence of film energy on thickness that leads to an instability to simultaneous thinning and thickening. We observe that de-wetting is also initiated at bunches of substrate steps in two other systems, Ag/W(110) and Ag/Ru(0001). We additionally describe how Cr films are converted into patterns of unidirectional stripes as the trenches that expose the wetting layer lengthen along the W[001] direction. Finally, we observe how 3D Cr islands form directly during film growth at elevated temperature. The Cr mesas (wedges) form as Cr film steps advance down the staircase of substrate steps, another example of the critical role that substrate steps play in 3D island formation
    corecore