2,532 research outputs found

    Helium Discharge and Dispersion In the LHC Accelerator Tunnel in Case of Cryogenic Failure

    Get PDF
    The Large Hadron Collider (LHC), presently under construction at CERN, will contain about 100 tonnes of helium, mostly located in the underground tunnel and caverns [1]. Potential failure modes of the accelerator, which may be followed by helium discharge to the tunnel, have been identified and the corresponding helium flows calculated. The paper presents the analysis of the helium discharge in the worst case of conditions, as well as the corresponding helium dispersion along the tunnel. The variation of oxygen concentration has been calculated and the oxygen deficiency hazard (ODH) analysed. The preventive means of protection, namely location and sizing of safety valves are also discussed

    An Experimental Study of Cold Helium Dispersion in Air

    Get PDF
    The Large Hadron Collider (LHC) presently under construction at CERN, will contain about 100 tons of helium mostly located in the underground tunnel and in caverns. Potential failure modes of the accelerator, which may be followed by helium discharge to the tunnel, have been identified and the corresponding helium flows calculated. To verify the analytical calculations of helium dispersion in the tunnel, a dedicated test set-up has been built. It represents a section of the LHC tunnel at a scale 1:13 and is equipped with a controllable helium relief system enabling the simulation of different scenarios of the LHC cryogenic system failures. Corresponding patterns of cold helium dispersion in air have been observed and analysed with respect to oxygen deficiency hazard. We report on the test set-up and the measurement results, which have been scaled to real LHC conditions

    Dynamical treatment of Fermi motion in a microscopic description of heavy ion collisions

    Get PDF
    A quasiclassical Pauli potential is used to simulate the Fermi motion of nucleons in a molecular dynamical simulation of heavy ion collisions. The thermostatic properties of a Fermi gas with and without interactions are presented. The inclusion of this Pauli potential into the quantum molecular dynamics (QMD) approach yields a model with well defined fermionic ground states, which is therefore also able to give the excitation energies of the emitted fragments. The deexcitation mechanisms (particle evaporation and multifragmentation) of the new model are investigated. The dynamics of the QMD with Pauli potential is tested by a wide range of comparisons of calculated and experimental double-differential cross sections for inclusive p-induced reactions at incident energies of 80 to 160 MeV. Results at 256 and 800 MeV incident proton energy are presented as predictions for completed experiments which are as yet unpublished

    What causes the irregular cycle of the atmospheric tape recorder signal in HCN?

    Get PDF
    Variations in the mixing ratio of long-lived trace gases entering the stratosphere in the tropics are carried upward with the rising air with the signal being observable throughout the tropical lower stratosphere. This phenomenon, referred to as "atmospheric tape recorder" has previously been observed for water vapor, CO2, and CO which exhibit an annual cycle. Recently, based on Microwave Limb Sounder (MLS) and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) satellite measurements, the tape recorder signal has been observed for hydrogen cyanide (HCN) but with an approximately two-year period. Here we report on a model simulation of the HCN tape recorder for the time period 2002-2008 using the Chemical Lagrangian Model of the Stratosphere (CLaMS). The model can reproduce the observed pattern of the HCN tape recorder signal if time-resolved emissions from fires in Indonesia are used as lower boundary condition. This finding indicates that inter-annual variations in biomass burning in Indonesia, which are strongly influenced by El Nino events, control the HCN tape recorder signal. A longer time series of tropical HCN data will probably exhibit an irregular cycle rather than a regular biannual cycle. Citation: Pommrich, R., R. Muller, J.-U. Grooss, G. Gunther, P. Konopka, M. Riese, A. Heil, M. Schultz, H.-C. Pumphrey, and K. A. Walker (2010), What causes the irregular cycle of the atmospheric tape recorder signal in HCN?, Geophys. Res. Lett., 37, L16805, doi:10.1029/2010GL044056

    Experimental Simulation of Helium Discharge into the LHC Tunnel

    Get PDF
    The LHC cryogenic system contains about 100 tons of liquid helium. The highest amount of helium is located in the magnet cold mass (about 58 tons @ 1.9 K, 0.13 MPa), in the QRL supply header C (about 26 tons @ 4.6 K, 0.36 MPa) and in the ring line (about 0.7 tons 290 K, 2 MPa). The rupture of header C is one of the failures leading to the worst scenario of helium discharge into the tunnel. To investigate the consequences of this failure an experiment has been performed. This paper presents the layout of the test set-up and compares the experimental results with calculated data

    Direct experimental observation of binary agglomerates in complex plasmas

    Full text link
    A defocusing imaging technique has been used as a diagnostic to identify binary agglomerates (dimers) in complex plasmas. Quasi-two-dimensional plasma crystal consisting of monodisperse spheres and binary agglomerates has been created where the agglomerated particles levitate just below the spherical particles without forming vertical pairs. Unlike spherical particles, the defocused images of binary agglomerates show distinct, stationary/periodically rotating interference fringe patterns. The results can be of fundamental importance for future experiments on complex plasmas

    Oxygen Deficiency Hazard (ODH) Monitoring System in the LHC Tunnel

    Get PDF
    The Large Hadron Collider (LHC) presently under construction at CERN, will contain about 100 tons of helium mostly located in equipment in the underground tunnel and in caverns. Potential failure modes of the accelerator, which may be followed by helium discharge to the tunnel, have been identified and the corresponding helium flows calculated [1, 2, 3]. In case of helium discharge in the tunnel causing oxygen deficiency, personnel working in the tunnel shall be warned and evacuate safely. This paper describes oxygen deficiency monitoring system based on the parameter of limited visibility due to the LHC tunnel curvature and acceptable delay time between the failure and the system activation

    Assessing priming for prosodic representations : Speaking rate, intonational phrase boundaries, and pitch accenting

    Get PDF
    We thank Candice Stanfield, Ashley Frost, and Ashley Devereux for their assistance with data collection and coding. This work was supported in part by National Institutes of Health Grant R01 DC008774 and by the James S. McDonnell Foundation.Peer reviewedPostprin
    • 

    corecore