162 research outputs found

    Pyrimidine biosynthesis is not an essential function for trypanosoma brucei bloodstream forms

    Get PDF
    <p>Background: African trypanosomes are capable of both pyrimidine biosynthesis and salvage of preformed pyrimidines from the host, but it is unknown whether either process is essential to the parasite.</p> <p>Methodology/Principal Findings: Pyrimidine requirements for growth were investigated using strictly pyrimidine-free media, with or without single added pyrimidine sources. Growth rates of wild-type bloodstream form Trypanosoma brucei brucei were unchanged in pyrimidine-free medium. The essentiality of the de novo pyrimidine biosynthesis pathway was studied by knocking out the PYR6-5 locus that produces a fusion product of orotate phosphoribosyltransferase (OPRT) and Orotidine Monophosphate Decarboxylase (OMPDCase). The pyrimidine auxotroph was dependent on a suitable extracellular pyrimidine source. Pyrimidine starvation was rapidly lethal and non-reversible, causing incomplete DNA content in new cells. The phenotype could be rescued by addition of uracil; supplementation with uridine, 2′deoxyuridine, and cytidine allowed a diminished growth rate and density. PYR6-5−/− trypanosomes were more sensitive to pyrimidine antimetabolites and displayed increased uracil transport rates and uridine phosphorylase activity. Pyrimidine auxotrophs were able to infect mice although the infection developed much more slowly than infection with the parental, prototrophic trypanosome line.</p> <p>Conclusions/Significance: Pyrimidine salvage was not an essential function for bloodstream T. b. brucei. However, trypanosomes lacking de novo pyrimidine biosynthesis are completely dependent on an extracellular pyrimidine source, strongly preferring uracil, and display reduced infectivity. As T. brucei are able to salvage sufficient pyrimidines from the host environment, the pyrimidine biosynthesis pathway is not a viable drug target, although any interruption of pyrimidine supply was lethal.</p&gt

    High-Level Heat Resistance of Spores of Bacillus amyloliquefaciens and Bacillus licheniformis Results from the Presence of a spoVA Operon in a Tn1546 Transposon

    Get PDF
    Bacterial endospore formers can produce spores that are resistant to many food processing conditions, including heat. Some spores may survive heating processes aimed at production of commercially sterile foods. Recently, it was shown that a spoVA operon, designated spoVA(2mob), present on a Tn1546 transposon in Bacillus subtilis, leads to profoundly increased wet heat resistance of B. subtilis spores. Such Tn1546 transposon elements including the spoVA(2mob) operon were also found in several strains of Bacillus amyloliquefaciens and Bacillus licheniformis, and these strains were shown to produce spores with significantly higher resistances to wet heat than their counterparts lacking this transposon. In this study, the locations and compositions of Tn1546 transposons encompassing the spoVA(2mob) operons in B. amyloliquefaciens and B. licheniformis were analyzed. Introduction of these spoVA(2mob) operons into B. subtilis 168 (producing spores that are not highly heat resistant) rendered mutant 168 strains that produced high-level heat resistant spores, demonstrating that these elements in B. amyloliquefaciens and B. licheniformis are responsible for high level heat resistance of spores. Assessment of growth of the nine strains of each species between 5.2°C and 57.7°C showed some differences between strains, especially at lower temperatures, but all strains were able to grow at 57.7°C. Strains of B. amyloliquefaciens and B. licheniformis that contain the Tn1546 elements (and produce high-level heat resistant spores) grew at temperatures similar to those of their Tn1546-negative counterparts that produce low-level heat resistant spores. The findings presented in this study allow for detection of B. amyloliquefaciens and B. licheniformis strains that produce highly heat resistant spores in the food chain

    Standardized and Individualized Parenteral Nutrition Mixtures in a Pediatric Home Parenteral Nutrition Population

    Get PDF
    OBJECTIVES: Studies evaluating efficacy or safety of standardized parenteral nutrition (PN) versus individualized PN are lacking. We aimed to assess effects on growth and safety of standardized PN compared with individualized PN in our Home PN group. METHODS: Descriptive cohort study in Dutch children on Home PN, in which standardized PN was compared with individualized PN. Both groups received similar micronutrient-supplementation. Primary outcome was growth over 2 years, secondary outcomes were electrolyte disturbances and biochemical abnormalities. Additionally, patients were matched for age to control for potential confounding characteristics. RESULTS: Fifty patients (50% girls, median age 6.5 years) were included, 16 (32%) received standardized PN mixtures. Age (11 vs 5 years), gestational age (39.2 vs 36.2 weeks) and PN duration (97 vs 39 months) were significantly higher in the group receiving standardized PN (P: ≤0.001; 0.027; 0.013 respectively). The standardized PN group showed an increase in weight-for-age (WFA), compared with a decrease in the individualized PN group (+0.38 SD vs -0.55 SD, P: 0.003). Electrolyte disturbances and biochemical abnormalities did not differ. After matching for age, resulting in comparable groups, no significant differences were demonstrated in WFA, height-for-age, or weight-for-height SD change. CONCLUSIONS: In children with chronic IF, over 2,5 years of age, standardized PN mixtures show a comparable effect on weight, height, and weight for height when compared with individualized PN mixtures. Also, standardized PN mixtures (with added micronutrients) seem noninferior to individualized PN mixtures in terms of electrolyte disturbances and basic biochemical abnormalities. Larger studies are needed to confirm these conclusions. TRIAL REGISTRATION: Academical Medical Center medical ethics committee number W18_079 #18.103

    Mitochondrion targeted trypanosome alternative oxidase inhibitors as chemotherapeutic agents against T. brucei

    Get PDF
    Trabajo presentado en el XII SEQT Mini Symposium. IIIrd Spanish/Portuguese/Brazilian Meeting, celebrado en Madrid del 17 al 18 de noviembre de 2016.During their life-cycle, trypanosomes adapt their energy metabolism to the availability of nutrients in their environment. Hence, procyclic forms of T. brucei have a fully functional respiratory chain and synthesize ATP by oxidative phosphorylation in the mitochondrion. In contrast, respiration of bloodstream forms (BSF) of T. brucei (i.e. the human-infective form) relies exclusively on glycolysis for energy production. The trypanosome alternative oxidase (TAO) is the sole terminal oxidase enzyme to re-oxidize NADH accumulated during glycolysis. It is a cyanide-resistant and cytochrome-independent ubiquinol oxidase which is sensitive to the specific inhibitors salicylhydroxamic acid (SHAM) and ascofuranone. This enzyme which is essential to the viability of BSF trypanosomes and has no counterpart in the mammalian host is a potential target for chemotherapy. To boost the activity of TAO inhibitors against T. brucei, we investigated a chemical strategy consisting in the conjugation of the inhibitor with lipophilic cations (LC) that can cross lipid bilayers by non-carrier mediated transport, and thus accumulate specifically into the mitochondrion, driven by the plasma and mitochondrial transmembrane potentials (negative inside). This design afforded several LC¿TAO inhibitor conjugates active in the submicromolar to low nanomolar range against wild type and resistant strains of African trypanosomes (T. b. brucei, T. congolense). Selectivity over human cells was >500. Studies of the effects on purified TAO, parasite respiration, mitochondrial membrane potential (¿m), and cell cycle suggest that TAO is a likely target of the compounds in vivo

    Nitric oxide and long-term outcomes after kidney transplantation:Results of the TransplantLines cohort study

    Get PDF
    Impaired endogenous nitric oxide (NO) production may contribute to graft failure and premature mortality in kidney transplant recipients (KTR). We investigated potential associations of 24-h urinary NOx (NO3- + NO2-) excretion (uNOx) with long-term outcomes. uNOx was determined by HPLC and GC-MS in 698 KTR and in 132 kidney donors before and after donation. Additionally, we measured urinary nitroso species (RXNO) by gas-phase chemiluminescence. Median uNOx was lower in KTR compared to kidney donors (688 [393-1076] vs. 1301 [868-1863] before donation and 1312 [982-1853] μmol/24 h after donation, P < 0.001). During median follow-up of 5.4 [4.8-6.1] years, 150 KTR died (61 due to cardiovascular disease) and 83 experienced graft failure. uNOx was inversely associated with all-cause mortality (HR per doubling of uNOx: 0.84 [95% CI 0.75-0.93], P < 0.001) and cardiovascular mortality (HR 0.78 [95% CI 0.67-0.92], P = 0.002). The association of uNOx with graft failure was lost when adjusted for renal function (HR per doubling of uNOx: 0.89 [95% CI 0.76-1.05], P = 0.17). There were no significant associations of urinary RXNO with outcomes. Our study suggests that KTR have lower NO production than healthy subjects and that lower uNOx is associated with a higher risk of all-cause and cardiovascular mortality

    ZZ-boson polarization as a model-discrimination analyzer

    Get PDF
    Determining the spin of any new particle is critical in identifying the true theory among various extensions of the Standard Model (SM). The degree of ZZ-boson polarization in any two-body decay process A→BZA\to B Z is sensitive to the spin assignments of two new particles AA and BB. Considering all possible spin-0, 1/2 and 1 combinations in a renormalizable field theory, we demonstrate that ZZ-boson polarization can indeed play a role of a decisive and universal analyzer in distinguishing the different spin assignments.Comment: 10 pages, 3 figures, 1 tabl

    Statement of the Prolamin Working Group on the Determination of Gluten in Fermented Foods Containing Partially Hydrolyzed Gluten

    Get PDF
    On August 12, 2020, the U.S. Food and Drug Administration (FDA) has finalized a rule related to gluten-free labeling for foods containing fermented, hydrolyzed ingredients. The FDA believes that there is no scientifically valid analytical method e ective for determining gluten in fermented or hydrolyzed foods. In the absence of an analytical method, the FDA has decided to evaluate gluten-free claims on these foods based only on evidence that the food or ingredient used is gluten-free before fermentation or hydrolysis. For example, barley-based beers from which gluten is removed during brewing using special filtration, adsorption and/or enzymatic treatment are therefore excluded from bearing a gluten-free label. The Prolamin Working Group (PWG) acknowledges that the FDA rule is a regulatory act and might have to take into consideration several aspects other than scientific evidence, including risk assessment. Nevertheless, the PWG thinks that science has to be the most important driver for regulatory acts in risk management.Fil: Scherf, Katharina Anne. Karlsruher Institut Für Technologie; AlemaniaFil: Catassi, Carlo. Università Politecnica Delle Marche; ItaliaFil: Chirdo, Fernando Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Estudios Inmunológicos y Fisiopatológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Estudios Inmunológicos y Fisiopatológicos; ArgentinaFil: Ciclitira, Paul J.. University of East Anglia; Reino UnidoFil: Feighery, Conleth Francis. Universidad de Dublin; IrlandaFil: Gianfrani, Carmen. Institute of Biochemistry and Cell Biology; ItaliaFil: Koning, Frits. Leiden University; Países BajosFil: Lundin, Knut E. A.. University of Oslo; NoruegaFil: Masci, Stefania. No especifíca;Fil: Schuppan, Detlef. No especifíca;Fil: Smulders, Marinus J. M.. Wageningen University and Research; Países BajosFil: Tranquet, Olivier. No especifíca;Fil: Troncone, Riccardo. University Federico II; ItaliaFil: Koehler, Peter. No especifíca

    Statement of the Prolamin Working Group on the Determination of Gluten in Fermented Foods Containing Partially Hydrolyzed Gluten

    Get PDF
    On August 12, 2020, the U.S. Food and Drug Administration (FDA) has finalized a rule related to gluten-free labeling for foods containing fermented, hydrolyzed ingredients. The FDA believes that there is no scientifically valid analytical method effective for determining gluten in fermented or hydrolyzed foods. In the absence of an analytical method, the FDA has decided to evaluate gluten-free claims on these foods based only on evidence that the food or ingredient used is gluten-free before fermentation or hydrolysis. For example, barley-based beers from which gluten is removed during brewing using special filtration, adsorption and/or enzymatic treatment are therefore excluded from bearing a gluten-free label

    Sequencing the genome of the Burmese python (Python molurus bivittatus) as a model for studying extreme adaptations in snakes

    Get PDF
    The Consortium for Snake Genomics is in the process of sequencing the genome and creating transcriptomic resources for the Burmese python. Here, we describe how this will be done, what analyses this work will include, and provide a timeline

    Serum free thiols predict cardiovascular events and all-cause mortality in the general population:a prospective cohort study

    Get PDF
    BACKGROUND: Serum free thiols (R-SH, sulfhydryl groups) reliably reflect systemic oxidative stress. Since serum free thiols are rapidly oxidized by reactive species, systemic oxidative stress is generally associated with reduced serum free thiol levels. Free thiols associate with favorable disease outcomes in many patient cohorts, and the current hypothesis is that oxidative stress might also play an important role in cardiovascular disease. In this study, we aimed to establish the role of serum free thiols in the general population by investigating their relationship with the risk of cardiovascular (CV) events and all-cause mortality. METHODS: Participants (n = 5955) of the Prevention of REnal and Vascular ENd-stage Disease (PREVEND) cohort study from the general population were included. At baseline, serum levels of free thiols were quantified and adjusted to total protein levels. Protein-adjusted serum free thiol levels were studied for their associations with clinical and biochemical parameters, as well as with the risk of CV events and all-cause mortality. RESULTS: The mean protein-adjusted serum free thiol level was 5.05 ± 1.02 μmol/g of protein. Protein-adjusted serum free thiols significantly predicted the risk of CV events, even after adjustment for potential confounding factors (hazard ratio [HR] per doubling 0.68 [95% confidence interval [CI] 0.47-1.00], P = 0.048). Similarly, protein-adjusted serum free thiols were significantly predictive of the risk of all-cause mortality (HR per doubling 0.66 [95% CI 0.44-1.00], P = 0.050). Stratified analyses revealed lower HRs for subjects with a lower body mass index (BMI), without hypertension, and without diabetes. Conversely, HRs were lower in subjects with albuminuria. CONCLUSIONS: In this large population-based cohort study, serum free thiols significantly predicted the risk of CV events and all-cause mortality. Our results highlight the potential significance and clinical applicability of serum free thiols since they are amendable to therapeutic intervention
    • …
    corecore