33 research outputs found
Stem Cell Transcriptome Responses and Corresponding Biomarkers That Indicate the Transition from Adaptive Responses to Cytotoxicity
Analysis of transcriptome changes has become an established method to characterize the reaction of cells to toxicants. Such experiments are mostly performed at compound concentrations close to the cytotoxicity threshold. At present, little information is available on concentration-dependent features of transcriptome changes, in particular, at the transition from noncytotoxic concentrations to conditions that are associated with cell death. Thus, it is unclear in how far cell death confounds the results of transcriptome studies. To explore this gap of knowledge, we treated pluripotent stem cells differentiating to human neuroepithelial cells (UKN1 assay) for short periods (48 h) with increasing concentrations of valproic acid (VPA) and methyl mercury (MeHg), two compounds with vastly different modes of action. We developed various visualization tools to describe cellular responses, and the overall response was classified as tolerance (minor transcriptome changes), functional adaptation (moderate/strong transcriptome responses, but no cytotoxicity), and degeneration. The latter two conditions were compared, using various statistical approaches. We identified (i) genes regulated at cytotoxic, but not at noncytotoxic, concentrations and (ii) KEGG pathways, gene ontology term groups, and superordinate biological processes that were only regulated at cytotoxic concentrations. The consensus markers and processes found after 48 h treatment were then overlaid with those found after prolonged (6 days) treatment. The study highlights the importance of careful concentration selection and of controlling viability for transcriptome studies. Moreover, it allowed identification of 39 candidate biomarkers of cytotoxicity. These could serve to provide alerts that data sets of interest may have been affected by cell death in the model system studied
Impact of untreated wastewater on a major European river evaluated with a combination of in\ua0vitro bioassays and chemical analysis
Complex mixtures of micropollutants, including pesticides, pharmaceuticals and industrial chemicals emitted by wastewater effluents to European rivers may compromise the quality of these water resources and may pose a risk to ecosystem health and abstraction of drinking water. In the present study, an integrated analytical and bioanalytical approach was applied to investigate the impact of untreated wastewater effluents from the city of Novi Sad, Serbia, into the River Danube. The study was based on three on-site large volume solid phase extracted water samples collected upstream and downstream of the untreated wastewater discharge. Chemical screening with liquid chromatography high resolution mass spectrometry (LC-HRMS) was applied together with a battery of in\ua0vitro cell-based bioassays covering important steps of the cellular toxicity pathway to evaluate effects on the activation of metabolism (arylhydrocarbon receptor AhR, peroxisome proliferator activated receptor gamma PPARγ), specific modes of action (estrogen receptor ERα, androgen receptor AR) and adaptive stress responses (oxidative stress, inflammation). Increased effects, significantly changed contamination patterns and higher chemical concentrations were observed downstream of the wastewater discharge. A mass balance approach showed that enhanced endocrine disruption was in good agreement with concentrations of detected hormones, while only a smaller fraction of the effects on xenobiotic metabolism
Programmes for the management of preoperative anaemia: audit in ten European hospitals within the PaBloE (Patient Blood Management in Europe) working group
Background and objectives
Preoperative anaemia is an independent risk factor for a higher morbidity and mortality, a longer hospitalization and increased perioperative transfusion rates. Managing preoperative anaemia is the first of three pillars of Patient Blood Management (PBM), a multidisciplinary concept to improve patient safety. While various studies provide medical information on (successful) anaemia treatment pathways, knowledge of organizational details of diagnosis and management of preoperative anaemia across Europe is scarce.
Materials and methods
To gain information on various aspects of preoperative anaemia management including organization, financing, diagnostics and treatment, we conducted a survey (74 questions) in ten hospitals from seven European nations within the PaBloE (Patient Blood Management in Europe) working group covering the year 2016.
Results
Organization and activity in the field of preoperative anaemia management were heterogeneous in the participating hospitals. Almost all hospitals had pathways for managing preoperative anaemia in place, however, only two nations had national guidelines. In six of the ten participating hospitals, preoperative anaemia management was organized by anaesthetists. Diagnostics and treatment focused on iron deficiency anaemia which, in most hospitals, was corrected with intravenous iron.
Conclusion
Implementation and approaches of preoperative anaemia management vary across Europe with a primary focus on treating iron deficiency anaemia. Findings of this survey motivated the hospitals involved to critically evaluate their practice and may also help other hospitals interested in PBM to develop action plans for diagnosis and management of preoperative anaemia
Contribution of MATE1 to Dofetilide-Induced Proarrhythmia
Dofetilide is a rapid delayed rectifier potassium current inhibitor widely used to prevent the recurrence of atrial fibrillation and flutter. The clinical use of this drug is associated with increases in QTc interval, which predisposes to ventricular cardiac arrhythmias. The mechanisms involved in the disposition of dofetilide, including its movement in and out of cardiomyocytes, remain unknown. Using a xenobiotic transporter screen, we identified MATE1 (SLC47A1) as an efflux transporter of dofetilide and found that genetic knockout or pharmacological inhibition of MATE1 in mice was associated with enhanced retention of dofetilide in cardiomyocytes and increased QTc prolongation. The urinary excretion of dofetilide was also dependent on MATE1 genotype, and we found that this transport mechanism provides a mechanistic basis for previously recorded drug-drug interactions of dofetilide with various contraindicated drugs, including bictegravir, cimetidine, ketoconazole, and verapamil. The translational significance of these observations was examined with a physiologically-based pharmacokinetic model that adequately predicted the drug-drug interaction liabilities in humans. These findings support the thesis that MATE1 serves a conserved cardioprotective role by restricting excessive cellular accumulation and warrant caution against the concurrent administration of potent MATE1 inhibitors and cardiotoxic substrates with a narrow therapeutic window
Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)
In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field