26 research outputs found

    Spry1 Is Expressed in Hemangioblasts and Negatively Regulates Primitive Hematopoiesis and Endothelial Cell Function

    Get PDF
    Development of the hematopoietic and endothelial lineages derives from a common mesodermal precursor, the Flk1(+) hemangioblast. However, the signaling pathways that regulate the development of hematopoietic and endothelial cells from this common progenitor cell remains incompletely understood. Using mouse models with a conditional Spry1 transgene, and a Spry1 knockout mouse, we investigated the role of Spry1 in the development of the endothelial and hematopoietic lineages during development.Quantitative RT-PCR analysis demonstrates that Spry1, Spry2, and Spry4 are expressed in Flk1(+) hemangioblasts in vivo, and decline significantly in c-Kit(+) and CD41(+) hematopoietic progenitors, while expression is maintained in developing endothelial cells. Tie2-Cre-mediated over-expression of Spry1 results in embryonic lethality. At E9.5 Spry1;Tie2-Cre embryos show near normal endothelial cell development and vessel patterning but have reduced hematopoiesis. FACS analysis shows a reduction of primitive hematopoietic progenitors and erythroblastic cells in Spry1;Tie2-Cre embryos compared to controls. Colony forming assays confirm the hematopoietic defects in Spry1;Tie2-Cre transgenic embryos. Immunostaining shows a significant reduction of CD41 or CD71 and dpERK co-stained cells in Spry1;Tie2-Cre embryos compared to controls, whereas the number of VEC(+) and dpERK co-stained cells is comparable. Compared to controls, Spry1;Tie2-Cre embryos also show a decrease in proliferation and an increase in apoptosis. Furthermore, loss of Spry1 results in an increase of CD41(+) and CD71(+) cells at E9.5 compared with controls.These data indicate that primitive hematopoietic cells derive from Tie2-expressing hemangioblasts and that Spry1 over expression inhibits primitive hematopoietic progenitor and erythroblastic cell development and expansion while having no obvious effect on endothelial cell development

    Assessing genetic polymorphisms using DNA extracted from cells present in saliva samples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Technical advances following the Human Genome Project revealed that high-quality and -quantity DNA may be obtained from whole saliva samples. However, usability of previously collected samples and the effects of environmental conditions on the samples during collection have not been assessed in detail. In five studies we document the effects of sample volume, handling and storage conditions, type of collection device, and oral sampling location, on quantity, quality, and genetic assessment of DNA extracted from cells present in saliva.</p> <p>Methods</p> <p>Saliva samples were collected from ten adults in each study. Saliva volumes from .10-1.0 ml, different saliva collection devices, sampling locations in the mouth, room temperature storage, and multiple freeze-thaw cycles were tested. One representative single nucleotide polymorphism (SNP) in the catechol-<it>0</it>-methyltransferase gene (COMT rs4680) and one representative variable number of tandem repeats (VNTR) in the serotonin transporter gene (5-HTTLPR: serotonin transporter linked polymorphic region) were selected for genetic analyses.</p> <p>Results</p> <p>The smallest tested whole saliva volume of .10 ml yielded, on average, 1.43 ± .77 μg DNA and gave accurate genotype calls in both genetic analyses. The usage of collection devices reduced the amount of DNA extracted from the saliva filtrates compared to the whole saliva sample, as 54-92% of the DNA was retained on the device. An "adhered cell" extraction enabled recovery of this DNA and provided good quality and quantity DNA. The DNA from both the saliva filtrates and the adhered cell recovery provided accurate genotype calls. The effects of storage at room temperature (up to 5 days), repeated freeze-thaw cycles (up to 6 cycles), and oral sampling location on DNA extraction and on genetic analysis from saliva were negligible.</p> <p>Conclusions</p> <p>Whole saliva samples with volumes of at least .10 ml were sufficient to extract good quality and quantity DNA. Using 10 ng of DNA per genotyping reaction, the obtained samples can be used for more than one hundred candidate gene assays. When saliva is collected with an absorbent device, most of the nucleic acid content remains in the device, therefore it is advisable to collect the device separately for later genetic analyses.</p

    Buccal cells DNA extraction to obtain high quality human genomic DNA suitable for polymorphism genotyping by PCR-RFLP and Real-Time PCR

    Get PDF
    OBJECTIVE: The aim of this study was to evaluate, by PCR-RFLP and Real-time PCR, the yield and quality of genomic DNA collected from buccal cells by mouthwash after different storage times at room temperature. MATERIAL AND METHODS: A group of volunteers was recruited to collect buccal cells using a mouthwash solution. The collected solution was divided into 3 tubes, one tube were used for immediate extraction and the remaining received ethanol and were kept at room temperature for 4 and 8 days followed by DNA extraction. The concentration, purity and integrity of the DNA were determined using spectrophotometry and electrophoresis. DNA quality differences among the three incubation times were also evaluated for genotyping EGF +61 A/G (rs 4444903) polymorphism by PCR-RFLP and for IRF6 polymorphism (rs 17015215) using Real-Time PCR. RESULTS: There was no significant difference of DNA yield (p=0.75) and purity (p=0.86) among the three different incubation times. DNA obtained from different incubation times presented high-molecular weight. The PCR-RFLP and Real time PCR reactions were successfully performed for all DNA samples, even those extracted after 8 days of incubation. All samples genotyped by Real-Time PCR presented C allele for IRF6 gene polymorphism (homozygous: CC; heterozygous: CT) and the C allele was used as a reference for Ct values. The samples presented the same genotype for the different times in both techniques. CONCLUSION: We demonstrated that the method described herein is simple and low cost, and that DNA can be extracted and PCR amplified after storage in mouthwash solution at room temperature

    The study of women, infant feeding and type 2 diabetes after GDM pregnancy and growth of their offspring (SWIFT Offspring study): prospective design, methodology and baseline characteristics

    Get PDF
    Abstract Background Breastfeeding is associated with reduced risk of becoming overweight or obese later in life. Breastfed babies grow more slowly during infancy than formula-fed babies. Among offspring exposed in utero to maternal glucose intolerance, prospective data on growth during infancy have been unavailable. Thus, scientific evidence is insufficient to conclude that breastfeeding reduces the risk of obesity among the offspring of diabetic mothers (ODM). To address this gap, we devised the Study of Women, Infant Feeding and Type 2 Diabetes after GDM Pregnancy and Growth of their Offspring, also known as the SWIFT Offspring Study. This prospective, longitudinal study recruited mother-infant pairs from the SWIFT Study, a prospective study of women with recent gestational diabetes mellitus (GDM). The goal of the SWIFT Offspring Study is to determine whether breastfeeding intensity and duration, compared with formula feeding, are related to slower growth of GDM offspring during the first year life. This article details the study design, participant eligibility, data collection, and methodologies. We also describe the baseline characteristics of the GDM mother-infant pairs. Methods The study enrolled 466 mother-infant pairs among GDM deliveries in northern California from 2009–2011. Participants attended three in-person study exams at 6–9 weeks, 6 months and 12 months after delivery for infant anthropometry (head circumference, body weight, length, abdominal circumference and skinfold thicknesses), as well as maternal anthropometry (body weight, waist circumference and percent body fat). Mothers also completed questionnaires on health and lifestyle behaviors, including infant diet, sleep and temperament. Breastfeeding intensity and duration were assessed via several sources (diaries, telephone interviews, monthly mailings and in-person exams) from birth through the first year of life. Pregnancy course, clinical perinatal and newborn outcomes were obtained from health plan electronic medical records. Infant saliva samples were collected and stored for genetics studies. Discussion This large, racially and ethnically diverse cohort of GDM offspring will enable evaluation of the relationship of infant feeding to growth during infancy independent of perinatal characteristics, sociodemographics and other risk factors. The longitudinal design provides the first quantitative measures of breastfeeding intensity and duration among GDM offspring during early life

    European children's sugar intake on weekdays versus weekends: the IDEFICS study

    No full text
    OBJECTIVES: To compare the intake of total sugars, foods and drinks rich in added sugar, and energy in children on weekdays (Monday Thursday), Fridays and weekends. METHODS: Dietary intake (g, kJ, energy %) was assessed using a computerized 24-h recall method in a sample of 2- to 9-year-old children from Belgium, Cyprus, Estonia, Germany, Hungary, Italy, Spain and Sweden who were participating in the IDEFICS baseline study (2007-2008). Analyses were performed in 9497 children by selecting one 24-h recall per child (for comparison of weekdays vs weekends, and Fridays vs weekdays and weekends). Selected stratified analyses were performed by country and age group. RESULTS: Intake of total sugars exceeded 20 energy % in all countries but one. In the non-stratified analyses, the intakes of total sugars and foods and drinks rich in added sugar were found to be higher on weekends compared with weekdays (both P < 0.001), and intakes on Fridays were a mix between intakes on weekdays and weekends. Energy intake did not differ between weekdays and weekends. Results were somewhat heterogeneous, both across countries and age groups. CONCLUSIONS: High intake of sugar remains an important nutritional problem in children of many European countries. Interventions aiming to prevent this diet pattern may optimize their impact by targeting dietary habits on Fridays and weekends. Furthermore, when conducting dietary assessment in children, data from weekends and Fridays in combination with a selection of Mondays to Thursdays are needed to capture habitual sugar intake. Age and dietary cultures should also be considered in dietary intervention and assessment as effect modifications were seen for both age and country

    Influence of sample collection and preanalytical sample processing on the analyses of biological markers in the European multicentre study IDEFICS

    No full text
    Objective: To evaluate the influence of a standardised sampling protocol and process quality across the different IDEFICS (Identification and prevention of dietary- and lifestyle-induced health effects in children and infants) centres on the results of the biochemical measurements. Design: Baseline survey within the community-based intervention study. Subjects: A total of 16 224 children, aged 2-8 years, enrolled in the IDEFICS baseline survey in 8 European countries. Venous or capillary blood samples were collected from 12 430 children, urine samples from 13 890 children and saliva samples from 14 019 children. Methods: A set of quality indicators was recorded for the biological blood, urine and saliva samples collected during the IDEFICS study. Results of blood and urine measurements were analysed and stratified by selected quality indicators. Results: Concentrations of biological markers in blood and urine measured during the IDEFICS baseline survey are associated with several quality indicators assessed in this study. Between-country variations of these biomarkers are described. It was confirmed that fasting has a big influence on the concentration of certain biomarkers. Biomarkers in morning urine samples may be erroneous if the study subjects void during the night or if samples are not taken from the very first morning urine. Conclusions: The analysed data underline that a standardised sampling protocol is of major importance, especially in multicentre studies, but non-compliance is ever present in spite of well-defined standard operation procedures. Deviations from the protocol should therefore always be documented to avoid error pertaining to the concentration of biological markers

    Rapid extraction and preservation of genomic DNA from human samples

    No full text
    Simple and rapid extraction of human genomic DNA remains a bottle neck for genome analysis and disease diagnosis. Current methods using microfilters require cumbersome, multiple handling steps in part because salt conditions must be controlled for attraction and elution of DNA in porous silica. We report a novel extraction method of human genomic DNA from buccal swab- and saliva samples. DNA is attracted on to a gold-coated microchip by an electric field and capillary action while the captured DNA is eluted by thermal heating at 70 °C. A prototype device was designed to handle 4 microchips, and a compatible protocol was developed. The extracted DNA using microchips was characterized by qPCR for different sample volumes, using different lengths of PCR amplicon, and nuclear and mitochondrial genes. In comparison with a commercial kit, an equivalent yield of DNA extraction was achieved with fewer steps. Room-temperature preservation for one month was demonstrated for captured DNA, facilitating straightforward collection, delivery and handling of genomic DNA in an environment-friendly protocol
    corecore