64 research outputs found

    Multifaceted Mechanism of Amicoumacin A Inhibition of Bacterial Translation

    Get PDF
    Amicoumacin A (Ami) halts bacterial growth by inhibiting the ribosome during translation. The Ami binding site locates in the vicinity of the E-site codon of mRNA. However, Ami does not clash with mRNA, rather stabilizes it, which is relatively unusual and implies a unique way of translation inhibition. In this work, we performed a kinetic and thermodynamic investigation of Ami influence on the main steps of polypeptide synthesis. We show that Ami reduces the rate of the functional canonical 70S initiation complex (IC) formation by 30-fold. Additionally, our results indicate that Ami promotes the formation of erroneous 30S ICs; however, IF3 prevents them from progressing towards translation initiation. During early elongation steps, Ami does not compromise EF-Tu-dependent A-site binding or peptide bond formation. On the other hand, Ami reduces the rate of peptidyl-tRNA movement from the A to the P site and significantly decreases the amount of the ribosomes capable of polypeptide synthesis. Our data indicate that Ami progressively decreases the activity of translating ribosomes that may appear to be the main inhibitory mechanism of Ami. Indeed, the use of EF-G mutants that confer resistance to Ami (G542V, G581A, or ins544V) leads to a complete restoration of the ribosome functionality. It is possible that the changes in translocation induced by EF-G mutants compensate for the activity loss caused by Ami.Russian Foundation for Basic ResearchRevisiΓ³n por pare

    The structure of helix 89 of 23S rRNA is important for peptidyl transferase function of Escherichia coli ribosome

    Get PDF
    AbstractHelix 89 of the 23S rRNA connects ribosomal peptidyltransferase center and elongation factor binding site. Secondary structure of helix 89 determined by X-ray structural analysis involves less base pairs then could be drawn for the helix of the same primary structure. It can be that alternative secondary structure might be realized at some stage of translation. Here by means of site-directed mutagenesis we stabilized either the β€œX-ray” structure or the structure with largest number of paired nucleotides. Mutation UU2492-3C which aimed to provide maximal pairing of the helix 89 of the 23S rRNA was lethal. Mutant ribosomes were unable to catalyze peptide transfer independently either with aminoacyl-tRNA or puromycin

    Signs and Symptoms of Central Nervous System Involvement and Their Pathogenesis in COVID-19 According to The Clinical Data (Review)

    Get PDF
    Detailed clinical assessment of the central nervous system involvement in SARS-CoV-2 infection is relevant due to the low specificity of neurological manifestations, the complexity of evaluation of patient complaints, reduced awareness of the existing spectrum of neurological manifestations of COVID-19, as well as low yield of the neurological imaging.The aim. To reveal the patterns of central nervous system involvement in COVID-19 and its pathogenesis based on clinical data.Among more than 200 primary literature sources from various databases (Scopus, Web of Science, RSCI, etc.), 80 sources were selected for evaluation, of them 72 were published in the recent years (2016-2020). The criteria for exclusion of sources were low relevance and outdated information.The clinical manifestations of central nervous system involvement in COVID-19 include smell (5-98% of cases) and taste disorders (6-89%), dysphonia (28%), dysphagia (19%), consciousness disorders (3-53%), headache (0-70%), dizziness (0-20%), and, in less than 3% of cases, visual impairment, hearing impairment, ataxia, seizures, stroke. Analysis of the literature data revealed the following significant mechanisms of the effects of highly contagious coronaviruses (including SARS-CoV-2) on the central nervous system: neurodegeneration (including cytokine- induced); cerebral thrombosis and thromboembolism; damage to the neurovascular unit; immune-mediated damage of nervous tissue, resulting in infection and allergy-induced demyelination.The neurological signs and symptoms seen in COVID-19 such as headache, dizziness, impaired smell and taste, altered level of consciousness, bulbar disorders (dysphagia, dysphonia) have been examined. Accordingly, we discussed the possible routes of SARS-CoV-2 entry into the central nervous system and the mechanisms of nervous tissue damage.Based on the literature analysis, a high frequency and variability of central nervous system manifestations of COVID-19 were revealed, and an important role of vascular brain damage and neurodegeneration in the pathogenesis of COVID-19 was highlighted

    ΠžΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΠΈ симптоматики ΠΈ ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π΅Π·Π° поврСТдСния Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ Π½Π΅Ρ€Π²Π½ΠΎΠΉ систСмы ΠΏΡ€ΠΈ COVID-19 ΠΏΠΎ Π΄Π°Π½Π½Ρ‹ΠΌ клиничСских исслСдований (ΠΎΠ±Π·ΠΎΡ€)

    Get PDF
    Detailed clinical assessment of the central nervous system involvement in SARS-CoV-2 infection is relevant due to the low specificity of neurological manifestations, the complexity of evaluation of patient complaints, reduced awareness of the existing spectrum of neurological manifestations of COVID-19, as well as low yield of the neurological imaging.The aim. To reveal the patterns of central nervous system involvement in COVID-19 and its pathogenesis based on clinical data.Among more than 200 primary literature sources from various databases (Scopus, Web of Science, RSCI, etc.), 80 sources were selected for evaluation, of them 72 were published in the recent years (2016-2020). The criteria for exclusion of sources were low relevance and outdated information.The clinical manifestations of central nervous system involvement in COVID-19 include smell (5-98% of cases) and taste disorders (6-89%), dysphonia (28%), dysphagia (19%), consciousness disorders (3-53%), headache (0-70%), dizziness (0-20%), and, in less than 3% of cases, visual impairment, hearing impairment, ataxia, seizures, stroke. Analysis of the literature data revealed the following significant mechanisms of the effects of highly contagious coronaviruses (including SARS-CoV-2) on the central nervous system: neurodegeneration (including cytokine- induced); cerebral thrombosis and thromboembolism; damage to the neurovascular unit; immune-mediated damage of nervous tissue, resulting in infection and allergy-induced demyelination.The neurological signs and symptoms seen in COVID-19 such as headache, dizziness, impaired smell and taste, altered level of consciousness, bulbar disorders (dysphagia, dysphonia) have been examined. Accordingly, we discussed the possible routes of SARS-CoV-2 entry into the central nervous system and the mechanisms of nervous tissue damage.Based on the literature analysis, a high frequency and variability of central nervous system manifestations of COVID-19 were revealed, and an important role of vascular brain damage and neurodegeneration in the pathogenesis of COVID-19 was highlighted.ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈΡΡ‚Π°Π»ΡŒΠ½ΠΎΠΉ клиничСской ΠΎΡ†Π΅Π½ΠΊΠΈ пораТСния Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ Π½Π΅Ρ€Π²Π½ΠΎΠΉ систСмы вирусом SARS-CoV-2 опрСдСляСтся Π½ΠΈΠ·ΠΊΠΎΠΉ ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ ряда нСврологичСских симптомов, ΡΠ»ΠΎΠΆΠ½ΠΎΡΡ‚ΡŒΡŽ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΈΠ²ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΆΠ°Π»ΠΎΠ± ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π°, Π½Π΅ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΠΉ ΠΎΡΠ²Π΅Π΄ΠΎΠΌΠ»Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈ Π½Π°ΡΡ‚ΠΎΡ€ΠΎΠΆΠ΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ ΠΏΠΎ ΠΏΠΎΠ²ΠΎΠ΄Ρƒ ΠΈΠΌΠ΅ΡŽΡ‰Π΅Π³ΠΎΡΡ спСктра нСврологичСских симптомов COVID-19, Π½ΠΈΠ·ΠΊΠΎΠΉ частотой патологичСских ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ ΠΏΠΎ Π΄Π°Π½Π½Ρ‹ΠΌ Π½Π΅ΠΉΡ€ΠΎΠ²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ.ЦСль ΠΎΠ±Π·ΠΎΡ€Π°. ВыявлСниС особСнностСй симптоматики ΠΈ ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π΅Π·Π° пораТСния Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ Π½Π΅Ρ€Π²Π½ΠΎΠΉ систСмы ΠΏΡ€ΠΈ COVID-19 Π½Π° основС Π°Π½Π°Π»ΠΈΠ·Π° Π΄Π°Π½Π½Ρ‹Ρ… клиничСской ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠΈ.Из Π±ΠΎΠ»Π΅Π΅ 200 ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°Π½Π½Ρ‹Ρ… источников Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π±Π°Π· Π΄Π°Π½Π½Ρ‹Ρ… (Scopus, Web of science, РИНЦ ΠΈ Π΄Ρ€.) для Π°Π½Π°Π»ΠΈΠ·Π° Π²Ρ‹Π±Ρ€Π°Π»ΠΈ 80 источников, ΠΈΠ· Π½ΠΈΡ… β€” 72 источника, ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ послСдних Π»Π΅Ρ‚ (2016-2020 Π³Π³.). ΠšΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠ΅ΠΌ ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ источников слуТили малая ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΈ ΡƒΡΡ‚Π°Ρ€Π΅Π²ΡˆΠΈΠ΅ Π΄Π°Π½Π½Ρ‹Π΅.ΠšΠ»ΠΈΠ½ΠΈΡ‡Π΅ΡΠΊΠ°Ρ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½Π° пораТСния Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ Π½Π΅Ρ€Π²Π½ΠΎΠΉ систСмы ΠΏΡ€ΠΈ COVID-19 Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ Π² сСбя: Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ обоняния (5-98% случаСв), Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ вкусовой Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ (6-89%), Π΄ΠΈΡΡ„ΠΎΠ½ΠΈΡŽ (28%), Π΄ΠΈΡΡ„Π°Π³ΠΈΡŽ (19%), количСствСнныС ΠΈ качСствСнныС Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ сознания (3-53%), Π³ΠΎΠ»ΠΎΠ²Π½ΡƒΡŽ боль (0-70%), Π³ΠΎΠ»ΠΎΠ²ΠΎΠΊΡ€ΡƒΠΆΠ΅Π½ΠΈΠ΅ (0-20%), ΠΌΠ΅Π½Π΅Π΅ 3% случаСв β€” Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ зрСния, слуха, Π°Ρ‚Π°ΠΊΡΠΈΡŽ, судороТный приступ, ΠΈΠ½ΡΡƒΠ»ΡŒΡ‚. Анализ Π΄Π°Π½Π½Ρ‹Ρ… Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ» Π²Ρ‹Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ Π·Π½Π°Ρ‡ΠΈΠΌΡ‹Π΅ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ воздСйствия высококонтагиозных коронавирусов (Π² Ρ‚ΠΎΠΌ числС вируса SARS-CoV-2) Π½Π° Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΡƒΡŽ Π½Π΅Ρ€Π²Π½ΡƒΡŽ систСму: нСйродСгСнСрация (Π² Ρ‚ΠΎΠΌ числС цитокининдуцированная); Ρ†Π΅Ρ€Π΅Π±Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΠ· ΠΈ Ρ†Π΅Ρ€Π΅Π±Ρ€Π°Π»ΡŒΠ½Π°Ρ тромбоэмболия; ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠ΅ нСйрососудистой Π΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹; иммуноопосрСдованноС ΠΏΠΎΡ€Π°ΠΆΠ΅Π½ΠΈΠ΅ Π½Π΅Ρ€Π²Π½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ, приводящСС ΠΊ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΡŽ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎ-аллСргичСского Π΄Π΅ΠΌΠΈΠ΅-Π»ΠΈΠ½ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ процСсса.РассмотрСли симптомы пораТСния Π½Π΅Ρ€Π²Π½ΠΎΠΉ систСмы ΠΏΡ€ΠΈ COVID-19, Ρ‚Π°ΠΊΠΈΠ΅ ΠΊΠ°ΠΊ головная боль, Π³ΠΎΠ»ΠΎΠ²ΠΎΠΊΡ€ΡƒΠΆΠ΅Π½ΠΈΠ΅, Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ обоняния ΠΈ вкусовых ΠΎΡ‰ΡƒΡ‰Π΅Π½ΠΈΠΉ, ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ уровня сознания, Π±ΡƒΠ»ΡŒΠ±Π°Ρ€Π½Ρ‹Π΅ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ (дисфагия, дисфония). БоотвСтствСнно, ΠΏΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ Π΄Π°Π½Π½Ρ‹Π΅ ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… путях проникновСния SARS-CoV-2 Π² Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΡƒΡŽ Π½Π΅Ρ€Π²Π½ΡƒΡŽ систСму ΠΈ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ пораТСния Π½Π΅Ρ€Π²Π½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ.По Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° отСчСствСнной ΠΈ Π·Π°Ρ€ΡƒΠ±Π΅ΠΆΠ½ΠΎΠΉ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ Π²Ρ‹ΡΠΎΠΊΡƒΡŽ частоту ΠΈ ΠΏΠΎΠ»ΠΈΠΌΠΎΡ€Ρ„Π½ΠΎΡΡ‚ΡŒ симптомов пораТСния Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ Π½Π΅Ρ€Π²Π½ΠΎΠΉ систСмы, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π²Π°ΠΆΠ½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ сосудистого пораТСния Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° ΠΈ Π½Π΅ΠΉΡ€ΠΎΠ΄Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ Π² ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π΅Π·Π΅ COVID-19

    Structure-Function Analysis of Human TYW2 Enzyme Required for the Biosynthesis of a Highly Modified Wybutosine (yW) Base in Phenylalanine-tRNA

    Get PDF
    Posttranscriptional modifications are critical for structure and function of tRNAs. Wybutosine (yW) and its derivatives are hyper-modified guanosines found at the position 37 of eukaryotic and archaeal tRNAPhe. TYW2 is an enzyme that catalyzes Ξ±-amino-Ξ±-carboxypropyl transfer activity at the third step of yW biogenesis. Using complementation of a Ξ”TYW2 strain, we demonstrate here that human TYW2 (hTYW2) is active in yeast and can synthesize the yW of yeast tRNAPhe. Structure-guided analysis identified several conserved residues in hTYW2 that interact with S-adenosyl-methionine (AdoMet), and mutation studies revealed that K225 and E265 are critical residues for the enzymatic activity. We previously reported that the human TYW2 is overexpressed in breast cancer. However, no difference in the tRNAPhe modification status was observed in either normal mouse tissue or a mouse tumor model that overexpresses Tyw2, indicating that hTYW2 may have a role in tumorigenesis unrelated to yW biogenesis
    • …
    corecore