28 research outputs found

    Quantum transport in ultracold atoms

    Full text link
    Ultracold atoms confined by engineered magnetic or optical potentials are ideal systems for studying phenomena otherwise difficult to realize or probe in the solid state because their atomic interaction strength, number of species, density, and geometry can be independently controlled. This review focuses on quantum transport phenomena in atomic gases that mirror and oftentimes either better elucidate or show fundamental differences with those observed in mesoscopic and nanoscopic systems. We discuss significant progress in performing transport experiments in atomic gases, contrast similarities and differences between transport in cold atoms and in condensed matter systems, and survey inspiring theoretical predictions that are difficult to verify in conventional setups. These results further demonstrate the versatility offered by atomic systems in the study of nonequilibrium phenomena and their promise for novel applications.Comment: 24 pages, 7 figures. A revie

    Taxonomy of the family Arenaviridae and the order Bunyavirales : update 2018

    Get PDF
    In 2018, the family Arenaviridae was expanded by inclusion of 1 new genus and 5 novel species. At the same time, the recently established order Bunyavirales was expanded by 3 species. This article presents the updated taxonomy of the family Arenaviridae and the order Bunyavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV) and summarizes additional taxonomic proposals that may affect the order in the near future.Peer reviewe

    Taxonomy of the family Arenaviridae and the order Bunyavirales: update 2018

    Get PDF
    In 2018, the family Arenaviridae was expanded by inclusion of 1 new genus and 5 novel species. At the same time, the recently established order Bunyavirales was expanded by 3 species. This article presents the updated taxonomy of the family Arenaviridae and the order Bunyavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV) and summarizes additional taxonomic proposals that may affect the order in the near future

    Computational Investigation of Acene-Modified Zinc-Porphyrin Based Sensitizers for Dye-Sensitized Solar Cells

    Full text link

    Effect of the anchoring group on electron injection : theoretical study of phosphonated dyes for dye-sensitized solar cells

    No full text
    The attachment chemistry of the chromophore onto the semiconductor surface influences the efficiency of electron injection in dye-sensitized solar cells (DSSCs). In this work, we study injection times for dyes that bind to the semiconductor surface via the phosphonic acid anchoring group and the effect on the injection time of different binding modes (molecular or dissociative, monodentate or bidentate) of phosphonic acid for both TiO2 rutile (110) and anatase (101) surfaces. We calculate electron injection times for a large set of organic dyes on TiO2 rutile (110) and anatase (101) surfaces for the most stable adsorption geometries of the phosphonic acid anchoring group, using a model based on partitioning the semiconductor chromophore system into fragments. We analyze the influence of the size and nature of the anchoring group on the injection times, performing calculations with larger models of the anchoring group (e.g., phenyl-phosphonic acid). Through the partitioning procedure, we are able to separate the effect of the binding geometry from other effects influencing the efficiency of the electron injection. The results show that dissociative bidentate adsorption modes generally lead to faster injection, compared to monodentate and molecular ones, similar to the results obtained earlier for analogous carboxylated dyes. Our results are in good agreement with experiments (where available), showing that our model is capable of predicting the effects of the anchoring groups and of different spacer groups on the injection times and is therefore suitable for designing new and more efficient chromophores
    corecore