22 research outputs found
Exchange coupled perpendicular media
The potential of exchange spring bilayers and graded media is reviewed. An
analytical model for the optimization of graded media gives an optimal value of
the magnetic polarization of Js = 0.8 T. The optimum design allows for
thermally stable grains with grain diameters in the order of 3.3 nm, which
supports ultra high density up to 5 to 10 Tbit per inch2. The switching field
distribution is significantly reduced in bilayer media and graded media
compared to single phase media. For the graded media the switching field
distribution is reduced by about a factor of two. For bilayer media the minimum
switching field distribution is obtained for soft layer anisotropies about one
fifth of the hard layer anisotropy. The influence of precessional switching on
the reversal time and the reversal field is investigated in detail for magnetic
bilayers. Exchange spring bilayers can be reversed with field pulses of 20 ps.Comment: submitted to JMMM, 'Current Perspectives; Perpendicular recording
Kondorski reversal in magnetic nanowires
Magnetization reversal in nanowire systems, such as alnico-type permanent magnets, slanted columns produced by glancing-angle deposition, and nanowires embedded in alumina templates, is investigated by model calculations. The angular dependence of the domain-wall propagation is Kondorski-like, reminiscent of Kondorski pinning in bulk materials but with a somewhat different physics and consistent with Kerr hysteresis-loop measurements. Criss-cross patterning of alnicos improves the coercivity but reduces the remanence, with virtually zero net effect on energy product. Finally, we briefly discuss the wire-radius dependence of the coercivity in the context of shape anisotropy and the occurrence of interaction domains in alnico
Nucleation, imaging and motion of magnetic domain walls in cylindrical nanowires
International audienceWe report several procedures for the robust nucleation of magnetic domain walls in cylindrical permalloy nanowires. Specific features of the magnetic force microscopy (MFM) contrast of such wires are discussed, to avoid the misinterpretation of the magnetization states. The domain walls moved under quasistatic magnetic fields in the range 0.1–10 mT, as evidenced by MFM at remanence at different stages of their motion
Domain wall pinning in a circular cross-section wire with modulated diameter
37 pages, 14 figures, overview chapterInternational audienceDomain wall propagation in cylindrical nanowires with modulations of diameter is a key phenomenon to design physics-oriented devices, or a disruptive three-dimensional magnetic memory. This chapter presents a combination of analytical modelling and micromagnetic simulations, with the aim to present a comprehensive panorama of the physics of pinning of domain walls at modulations, when moved under the stimulus of a magnetic field or a spin-polarized current. For the sake of considering simple physics, we consider diameters of a few tens of nanometers at most, and accordingly domain walls of transverse type. Modeling with suitable approximations provides simple scaling laws, while simulations are more accurate, refining the results and defining the range of validity of the models. While pinning increases with the relative change of diameter, a key feature is the much larger efficiency of pinning at an increase of diameter upon considering current rather than field, due to the drastic decrease of current density related to the increase of diameter