130 research outputs found

    Identification of cyst nematode B-type CLE peptides and modulation of the vascular stem cell pathway for feeding cell formation.

    Get PDF
    Stem cell pools in the SAM (shoot apical meristem), RAM (root apical meristem) and vascular procambium/cambium are regulated by CLE-receptor kinase-WOX signaling modules. Previous data showed that cyst nematode CLE-like effector proteins delivered into host cells through a stylet, act as ligand mimics of plant A-type CLE peptides and are pivotal for successful parasitism. Here we report the identification of a new class of CLE peptides from cyst nematodes with functional similarity to the B-type CLE peptide TDIF (tracheary element differentiation inhibitory factor) encoded by the CLE41 and CLE44 genes in Arabidopsis. We further demonstrate that the TDIF-TDR (TDIF receptor)-WOX4 pathway, which promotes procambial meristem cell proliferation, is involved in beet cyst nematode Heterodera schachtii parasitism. We observed activation of the TDIF pathway in developing feeding sites, reduced nematode infection in cle41 and tdr-1 wox4-1 mutants, and compromised syncytium size in cle41, tdr-1, wox4-1 and tdr-1 wox4-1 mutants. By qRT-PCR and promoter:GUS analyses, we showed that the expression of WOX4 is decreased in a clv1-101 clv2-101 rpk2-5 mutant, suggesting that WOX4 is a potential downstream target of nematode CLEs. Exogenous treatment with both nematode A-type and B-type CLE peptides induced massive cell proliferation in wild type roots, suggesting that the two types of CLEs may regulate cell proliferation during feeding site formation. These findings highlight an important role of the procambial cell proliferation pathway in cyst nematode feeding site formation

    Relation between Prolonged Sedentary Bouts and Health-Related Quality of Life in Patients on Chronic Hemodialysis

    Get PDF
    This study aimed to investigate the link between prolonged sedentary bouts and health-related quality of life (QOL) in patients on chronic hemodialysis (CHD). A total of 84 outpatients on CHD, aged 71.6±11.8 years, were enrolled in this cross-sectional study. Parameters for prolonged sedentary bouts [i.e., ≧ 30 min (% and bout) and ≧ 60 min (% and bout)] were measured using a triaxial accelerometer. Health-related QOL (HRQOL) was evaluated by the Euro-QOL (EQ-5D). Clinical parameters were obtained from medical records. Relatively prolonged sedentary bouts (%) were 44.0±18.2 (≧ 30 min) and 29.8±16.5 (≧ 60 min) for total days. Prolonged sedentary bouts (bouts) were 6.2±2.7 (≧ 30 min) and 2.7±1.6 (≧ 60 min) for total days. EQ-5D scores were 0.728±0.220. All prolonged sedentary bout parameters were negatively correlated with EQ-5D scores, except for prolonged sedentary bouts (≧ 60 min) (min) and relatively prolonged sedentary bouts (%) on hemodialysis days. Multiple regression analysis showed that prolonged sedentary bout parameters were an important factor in EQ-5D scores even after adjusting for confounding factors for total and non-hemodialysis days. Our results suggested that prolonged sedentary bouts were closely associated with HRQOL in patients on CHD, especially on non-hemodialysis days

    VISUAL-CC system uncovers the role of GSK3 as an orchestrator of vascular cell type ratio in plants

    Get PDF
    The phloem transports photosynthetic assimilates and signalling molecules. It mainly consists of sieve elements (SEs), which act as "highways" for transport, and companion cells (CCs), which serve as "gates" to load/unload cargos. Though SEs and CCs function together, it remains unknown what determines the ratio of SE/CC in the phloem. Here we develop a new culture system for CC differentiation in Arabidopsis named VISUAL-CC, which almost mimics the process of the SE-CC complex formation. Comparative expression analysis in VISUAL-CC reveals that SE and CC differentiation tends to show negative correlation, while total phloem differentiation is unchanged. This varying SE/CC ratio is largely dependent on GSK3 kinase activity. Indeed, gsk3 hextuple mutants possess many more SEs and fewer CCs, whereas gsk3 gain-of-function mutants partially increase the CC number. Taken together, GSK3 activity appears to function as a cell-fate switch in the phloem, thereby balancing the SE/CC ratio. Tamaki et al. develop VISUAL-CC to study SE-CC (sieve elements-companion cells) complex formation. They show that the balance in the SE/CC ratio is dependent on GSK3 activity using different genetic backgrounds. Their work provides insights on the role of GSK3 as a cell-fate switch in the phloem.Peer reviewe

    A guiding role of the Arabidopsis circadian clock in cell differentiation revealed by time-series single-cell RNA sequencing

    Get PDF
    Circadian rhythms and progression of cell differentiation are closely coupled in multicellular organisms. However, whether establishment of circadian rhythms regulates cell differentiation or vice versa has not been elucidated due to technical limitations. Here, we exploit high cell fate plasticity of plant cells to perform single-cell RNA sequencing during the entire process of cell differentiation. By analyzing reconstructed actual time series of the differentiation processes at single-cell resolution using a method we developed (PeakMatch), we find that the expression profile of clock genes is changed prior to cell differentiation, including induction of the clock gene LUX ARRYTHMO (LUX). ChIP sequencing analysis reveals that LUX induction in early differentiating cells directly targets genes involved in cell-cycle progression to regulate cell differentiation. Taken together, these results not only reveal a guiding role of the plant circadian clock in cell differentiation but also provide an approach for time-series analysis at single-cell resolution

    IFMIF, the European–Japanese efforts under the Broader Approach agreement towards a Li(d,xn) neutron source: Current status and future options

    Get PDF
    The necessity of a neutron source for fusion materials research was identified already in the 70s. Though neutrons induced degradation present similarities on a mechanistic approach, thresholds energies for crucial transmutations are typically above fission neutrons spectrum. The generation of He via 56Fe (n,α) 53Cr in future fusion reactors with around 12 appm/dpa will lead to swelling and structural materials embrittlement. Existing neutron sources, namely fission reactors or spallation sources lead to different degradation, attempts for extrapolation are unsuccessful given the absence of experimental observations in the operational ranges of a fusion reactor. Neutrons with a broad peak at 14 MeV can be generated with Li(d,xn) reactions; the technological efforts that started with FMIT in the early 80s have finally matured with the success of IFMIF/EVEDA under the Broader Approach Agreement. The status today of five technological challenges, perceived in the past as most critical, are addressed. These are: 1. the feasibility of IFMIF accelerators, 2. the long term stability of lithium flow at IFMIF nominal conditions, 3. the potential instabilities in the lithium screen induced by the 2 × 5 MW impacting deuteron beam, 4. the uniformity of temperature in the specimens during irradiation, and 5. the validity of data provided with small specimens. Other ideas for fusion material testing have been considered, but they possibly are either not technologically feasible if fixed targets are considered or would require the results of a Li(d,xn) facility to be reliably designed. In addition, today we know beyond reasonable doubt that the cost of IFMIF, consistently estimated throughout decades, is marginal compared with the cost of a fusion reactor. The less ambitious DEMO reactor performance being considered correlates with a lower need of fusion neutrons flux; thus IFMIF with its two accelerators is possibly not needed since with only one accelerator as the European DONES or the Japanese A-FNS propose, the present needs > 10 dpa/fpy would be fulfilled. World fusion roadmaps stipulate a fusion relevant neutron source by the middle of next decade, the success of IFMIF/EVEDA phase is materializing this four decades old dream

    The Receptor-Like Kinase SOL2 Mediates CLE Signaling in Arabidopsis

    Get PDF
    Arabidopsis sol2 mutants showed CLV3 peptide resistance. Twenty-six synthetic CLE peptides were examined in the clv1, clv2 and sol2 mutants. sol2 showed different levels of resistance to the various peptides, and the spectrum of peptide resistance was quite similar to that of clv2. SOL2 encoded a receptor-like kinase protein which is identical to CORYNE (CRN). GeneChip analysis revealed that the expression of several genes was altered in the sol2 root tip. Here, we suggest that SOL2, together with CLV2, plays an important role in the regulation of root meristem development through the CLE signaling pathway

    CLE Peptides can Negatively Regulate Protoxylem Vessel Formation via Cytokinin Signaling

    Get PDF
    Cell–cell communication is critical for tissue and organ development. In plants, secretory CLAVATA3/EMBRYO SURROUNDING REGION-related (CLE) peptides function as intercellular signaling molecules in various aspects of tissue development including vascular development. However, little is known about intracellular signaling pathways functioning in vascular development downstream of the CLE ligands. We show that CLE peptides including CLE10, which is preferentially expressed in the root vascular system, inhibit protoxylem vessel formation in Arabidopsis roots. GeneChip analysis displayed that CLE10 peptides repressed specifically the expression of two type-A Arabidopsis Response Regulators (ARRs), ARR5 and ARR6, whose products act as negative regulators of cytokinin signaling. The arr5 arr6 roots exhibited defective protoxylem vessel formation. These results indicate that CLE10 inhibits protoxylem vessel formation by suppressing the expression of type-A ARR genes including ARR5 and ARR6. This was supported by the finding that CLE10 did not suppress protoxylem vessel formation in a background of arr10 arr12, a double mutant of type-B ARR genes. Thus, our results revealed cross-talk between CLE signaling and cytokinin signaling in protoxylem vessel formation in roots. Taken together with the indication that cytokinin signaling functions downstream of the CLV3/WUS signaling pathway in the shoot apical meristem, the cross-talk between CLE and cytokinin signaling pathways may be a common feature in plant development
    corecore