7 research outputs found

    Attenuated palmitoylation of serotonin receptor 5-HT1A affects receptor function and contributes to depression-like behaviors

    Get PDF
    The serotonergic system and in particular serotonin 1A receptor (5-HT1AR) are implicated in major depressive disorder (MDD). Here we demonstrated that 5-HT1AR is palmitoylated in human and rodent brains, and identified ZDHHC21 as a major palmitoyl acyltransferase, whose depletion reduced palmitoylation and consequently signaling functions of 5-HT1AR. Two rodent models for depression-like behavior show reduced brain ZDHHC21 expression and attenuated 5-HT1AR palmitoylation. Moreover, selective knock-down of ZDHHC21 in the murine forebrain induced depression-like behavior. We also identified the microRNA miR-30e as a negative regulator of Zdhhc21 expression. Through analysis of the post-mortem brain samples in individuals with MDD that died by suicide we find that miR-30e expression is increased, while ZDHHC21 expression, as well as palmitoylation of 5-HT1AR, are reduced within the prefrontal cortex. Our study suggests that downregulation of 5-HT1AR palmitoylation is a mechanism involved in depression, making the restoration of 5-HT1AR palmitoylation a promising clinical strategy for the treatment of MDD

    Effect of Central Administration of Brain-Derived Neurotrophic Factor (BDNF) on Behavior and Brain Monoamine Metabolism in New Recombinant Mouse Lines Differing by 5-HT1A Receptor Functionality

    No full text
    Experiments were carried out on recombinant B6.CBA-D13Mit76C (B6-M76C) and B6.CBA-D13Mit76B (B6-M76B) mouse lines created by transferring a 102.73–118.83 Mbp fragment of chromosome 13, containing the 5-HT1A receptor gene, from CBA or C57BL/6 strains to a C57BL/6 genetic background, correspondingly. We have recently shown different levels of 5-HT1A receptor functionality in these mouse lines. The administration of BDNF (300 ng/mouse, i.c.v.) increased the levels of exploratory activity and intermale aggression only in B6-M76B mice, without affecting depressive-like behavior in both lines. In B6-M76B mice the behavioral alterations were accompanied by a decrease in the 5-HT2A receptor functional activity and the augmentation of levels of serotonin and its main metabolite, 5-HIAA (5-hydroxyindoleacetic acid), in the midbrain. Moreover, the levels of dopamine and its main metabolites, HVA (homovanillic acid) and DOPAC (3,4-dihydroxyphenylacetic acid), were also elevated in the striatum of B6-M76B mice after BDNF treatment. In B6-M76C mice, central BDNF administration led only to a reduction in the functional activity of the 5-HT1A receptor and a rise in DOPAC levels in the midbrain. The obtained data suggest the importance of the 102.73–118.83 Mbp fragment of mouse chromosome 13, which contains the 5-HT1A receptor gene, for BDNF-induced alterations in behavior and the brain monoamine system

    Effects of a Cc2d1a/Freud-1 Knockdown in the Hippocampus on Behavior, the Serotonin System, and BDNF

    No full text
    The serotonin 5-HT1A receptor is one of the most abundant and widely distributed brain serotonin (5-HT) receptors that play a major role in the modulation of emotions and behavior. The 5-HT1A receptor gene (Htr1a) is under the control of transcription factor Freud-1 (also known as Cc2d1a/Freud-1). Here, using adeno-associated virus (AAV) constructs in vivo, we investigated effects of a Cc2d1a/Freud-1 knockdown in the hippocampus of C57BL/6J mice on behavior, the brain 5-HT system, and brain-derived neurotrophic factor (BDNF). AAV particles carrying the pAAV_H1-2_shRNA-Freud-1_Syn_EGFP plasmid encoding a short-hairpin RNA targeting mouse Cc2d1a/Freud-1 mRNA had an antidepressant effect in the forced swim test 5 weeks after virus injection. The knockdown impaired spatiotemporal memory as assessed in the Morris water maze. pAAV_H1-2_shRNA-Freud-1_Syn_EGFP decreased Cc2d1a/Freud-1 mRNA and protein levels. Furthermore, the Cc2d1a/Freud-1 knockdown upregulated 5-HT and its metabolite 5-hydroxyindoleacetic acid but not their ratio. The Cc2d1a/Freud-1 knockdown failed to increase mRNA and protein levels of Htr1a but diminished a 5-HT1A receptor functional response. Meanwhile, the Cc2d1a/Freud-1 knockdown reduced Creb mRNA expression and CREB phosphorylation and upregulated cFos mRNA. The knockdown enhanced the expression of a BDNF precursor (proBDNF protein), which is known to play a crucial part in neuroplasticity. Our data indicate that transcription factor Cc2d1a/Freud-1 is implicated in the pathogenesis of depressive disorders not only via the 5-HT1A receptor and transcription factor CREB but also through an influence on BDNF

    Genetic Background Underlying 5-HT1A Receptor Functioning Affects the Response to Fluoxetine

    No full text
    The influence of genetic background on sensitivity to drugs represents a topical problem of personalized medicine. Here, we investigated the effect of chronic (20 mg/kg, 14 days, i.p.) antidepressant fluoxetine treatment on recombinant B6-M76C mice, differed from control B6-M76B mice by CBA-derived 102.73–110.56 Mbp fragment of chromosome 13 and characterized by altered sensitivity of 5-HT1A receptors to chronic 8-OH-DPAT administration and higher 5-HT1A receptor mRNA levels in the frontal cortex and hippocampus. Significant changes in the effects of fluoxetine treatment on behavior and brain 5-HT system in recombinant B6-M76C mice were revealed. In contrast to B6-M76B mice, in B6-M76C mice, fluoxetine produced pro-depressive effects, assessed in a forced swim test. Fluoxetine decreased 5-HT1A receptor mRNA levels in the cortex and hippocampus, reduced 5-HT1A receptor protein levels and increased receptor silencer Freud-1 protein levels in the hippocampus of B6-M76C mice. Fluoxetine increased mRNA levels of the gene encoding key enzyme for 5-HT synthesis in the brain, tryptophan hydroxylase-2, but decreased tryptophan hydroxylase-2 protein levels in the midbrain of B6-M76B mice. These changes were accompanied by increased expression of the 5-HT transporter gene. Fluoxetine reduced 5-HT and 5-HIAA levels in cortex, hippocampus and midbrain of B6-M76B and in cortex and midbrain of B6-M76C; mice. These data demonstrate that changes in genetic background may have a dramatic effect on sensitivity to classic antidepressants from the Selective Serotonin Reuptake Inhibitors family. Additionally, the results provide new evidence confirming our idea on the disrupted functioning of 5-HT1A autoreceptors in the brains of B6-M76C mice, suggesting these mice as a model of antidepressant resistance

    Attenuated palmitoylation of serotonin receptor 5-HT1A affects receptor function and contributes to depression-like behaviors

    Get PDF
    The serotonergic system and in particular serotonin 1A receptor (5-HT1AR) are implicated in major depressive disorder (MDD). Here we demonstrated that 5-HT1AR is palmitoylated in human and rodent brains, and identified ZDHHC21 as a major palmitoyl acyltransferase, whose depletion reduced palmitoylation and consequently signaling functions of 5-HT1AR. Two rodent models for depression-like behavior show reduced brain ZDHHC21 expression and attenuated 5-HT1AR palmitoylation. Moreover, selective knock-down of ZDHHC21 in the murine forebrain induced depression-like behavior. We also identified the microRNA miR-30e as a negative regulator of Zdhhc21 expression. Through analysis of the post-mortem brain samples in individuals with MDD that died by suicide we find that miR-30e expression is increased, while ZDHHC21 expression, as well as palmitoylation of 5-HT1AR, are reduced within the prefrontal cortex. Our study suggests that downregulation of 5-HT1AR palmitoylation is a mechanism involved in depression, making the restoration of 5-HT1AR palmitoylation a promising clinical strategy for the treatment of MDD

    Motherese in Interaction: At the Cross-Road of Emotion and Cognition? (A Systematic Review)

    No full text
    corecore