5 research outputs found

    Rod Electroretinograms Elicited by Silent Substitution Stimuli from the Light-Adapted Human Eye

    Get PDF
    YesPurpose: To demonstrate that silent substitution stimuli can be used to generate electroretinograms (ERGs) that effectively isolate rod photoreceptor function in humans without the need for dark adaptation, and that this approach constitutes a viable alternative to current clinical standard testing protocols. Methods: Rod-isolating and non-isolating sinusoidal flicker stimuli were generated on a 4 primary light-emitting diode (LED) Ganzfeld stimulator to elicit ERGs from participants with normal and compromised rod function who had not undergone dark-adaptation. Responses were subjected to Fourier analysis, and the amplitude and phase of the fundamental were used to examine temporal frequency and retinal illuminance response characteristics. Results: Electroretinograms elicited by rod-isolating silent substitution stimuli exhibit low-pass temporal frequency response characteristics with an upper response limit of 30 Hz. Responses are optimal between 5 and 8 Hz and between 10 and 100 photopic trolands (Td). There is a significant correlation between the response amplitudes obtained with the silent substitution method and current standard clinical protocols. Analysis of signal-to-noise ratios reveals significant differences between subjects with normal and compromised rod function. Conclusions: Silent substitution provides an effective method for the isolation of human rod photoreceptor function in subjects with normal as well as compromised rod function when stimuli are used within appropriate parameter ranges. Translational Relevance: This method of generating rod-mediated ERGs can be achieved without time-consuming periods of dark adaptation, provides improved isolation of rod- from cone-based activity, and will lead to the development of faster clinical electrophysiologic testing protocols with improved selectivity

    Temporal characteristics of L and M-cone isolating steady-state ERGs

    No full text
    noCone isolating stimuli were used to assess the temporal frequency response characteristics of L- and M-cone electroretinograms (ERGs) in nine trichromatic and four dichromatic human observers. The stimuli comprised sinusoidal temporal modulations varying from 5 to 100 Hz. ERGs were recorded using corneal fiber electrodes and subjected to fast Fourier transform analysis. At low temporal frequencies (20  Hz>20  Hz) L-cone ERGs had greater amplitudes and shorter apparent latencies than the M-cone responses. These differences between the L- and M-cone ERGs are consistent with their mediation by chromatic and luminance postreceptoral processing pathways at low and high temporal frequencies, respectively

    Incremental and decremental L- and M-cone driven ERG responses: I. Square-wave pulse stimulation.

    No full text
    noElectroretinograms (ERGs) elicited by transient, square-wave L- and M-cone isolating stimuli were recorded from human trichromatic (n=19) and dichromatic (n=4) observers. The stimuli were generated on a 4 primary LED stimulator and were equated in terms of cone modulation (cone contrast = 0.11) and retinal illuminance (12,000 trolands). L- and M-cone isolated ERGs had waveforms similar to those observed for luminance responses. However, M-cone ERGs exhibited a phase reversal in their responses to onset and offset stimuli relative to the L-cone responses. This on-off response reversal was observed in trichromats but not dichromats. Simultaneous counter-phase and in-phase combinations of L- and M-cone isolating stimuli generated responses that reflected chromatic and luminance processing, respectively. We conclude that L- and M-cone specific ERGs provide a measure of how photoreceptors contribute to post-receptoral mechanisms
    corecore