4,837 research outputs found

    A spatial and spectral maximum entropy method as applied to OVRO solar data

    Get PDF
    We present first results of applying a Maximum Entropy Method (MEM) algorithm that acts in both the spatial and spectral domains to data obtained with the frequency-agile solar interferometer at Owens Valley Radio Observatory (OVRO) taken at 45 frequencies in the range 1 – 18 GHz. The traditional MEM algorithm does not exploit the spatial information available at adjacent frequencies in the OVRO data, but rather applies separately to each frequency. We seek an algorithm that obtains a global solution to the visibilities in both the spatial and spectral domains. To simplify the development process, the algorithm is at present limited to the one-dimensional spatial case. We apply our 1-d algorithm to observations taken with the OVRO frequency-agile interferometer of active region AR 5417 near the solar limb on March 20, 1989 (vernal equinox). The interferometer's two 27 m antennas and 40 m antenna were arranged in a linear east-west array, which at the vernal equinox gives a good match to the 1-d algorithm. Our results show that including the spectral MEM term greatly improves the dynamic range of the reconstructed image compared with a reconstruction without using this information. The derived brightness temperature spectra show that for AR 5417 the dominant radio emission mechanism is thermal gyroresonance and we use this information to deduce the spatial variation of electron temperature and magnetic field strength in the corona above the active region

    The solar differential rotation in the 18th century

    Full text link
    The sunspot drawings of Johann Staudacher of 1749--1799 were used to determine the solar differential rotation in that period. These drawings of the full disk lack any indication of their orientation. We used a Bayesian estimator to obtain the position angles of the drawings, the corresponding heliographic spot positions, a time offset between the drawings and the differential rotation parameter \delta\Omega, assuming the equatorial rotation period is the same as today. The drawings are grouped in pairs, and the resulting marginal distributions for \delta\Omega were multiplied. We obtain \delta\Omega=-0.048 \pm 0.025 d^-1 (-2.75^o/d) for the entire period. There is no significant difference to the value of the present Sun. We find an (insignificant) indication for a change of \delta\Omega throughout the observing period from strong differential rotation, \delta\Omega\approx -0.07 d^-1, to weaker differential rotation, \delta\Omega\approx-0.04 d^-1.Comment: 6 pages, 6 figures, accepted for Astronomy and Astrophysic

    Observation and Modeling of the Solar-Cycle Variation of the Meridional Flow

    Get PDF
    We present independent observations of the solar-cycle variation of flows near the solar surface and at a depth of about 60 Mm, in the latitude range ±45\pm45^\circ. We show that the time-varying components of the meridional flow at these two depths have opposite sign, while the time-varying components of the zonal flow are in phase. This is in agreement with previous results. We then investigate whether the observations are consistent with a theoretical model of solar-cycle dependent meridional circulation based on a flux-transport dynamo combined with a geostrophic flow caused by increased radiative loss in the active region belt (the only existing quantitative model). We find that the model and the data are in qualitative agreement, although the amplitude of the solar-cycle variation of the meridional flow at 60 Mm is underestimated by the model.Comment: To be published in Solar Physcis Topical Issue "Helioseismology, Asteroseismology, and MHD Connections

    Deeply penetrating banded zonal flows in the solar convection zone

    Full text link
    Helioseismic observations have detected small temporal variations of the rotation rate below the solar surface corresponding to the so-called `torsional oscillations' known from Doppler measurements of the surface. These appear as bands of slower and faster than average rotation moving equatorward. Here we establish, using complementary helioseismic observations over four years from the GONG network and from the MDI instrument on board SOHO, that the banded flows are not merely a near-surface phenomenon: rather they extend downward at least 60 Mm (some 8% of the total solar radius) and thus are evident over a significant fraction of the nearly 200 Mm depth of the solar convection zone.Comment: 4 pages, 4 figures To be published in ApJ Letters (accepted 3/3/2000

    Dynamics of the fast solar tachocline: I. Dipolar field

    Full text link
    One possible scenario for the origin of the solar tachocline, known as the "fast tachocline", assumes that the turbulent diffusivity exceeds eta>10^9 cm^2/s. In this case the dynamics will be governed by the dynamo-generated oscillatory magnetic field on relatively short timescales. Here, for the first time, we present detailed numerical models for the fast solar tachocline with all components of the magnetic field calculated explicitly, assuming axial symmetry and a constant turbulent diffusivity eta and viscosity nu. We find that a sufficiently strong oscillatory poloidal field with dipolar latitude dependence at the tachocline-convective zone boundary is able to confine the tachocline. Exploring the three-dimensional parameter space defined by the viscosity in the range log(nu)=9-11, the magnetic Prandtl number in the range Prm=0.1-10, and the meridional flow amplitude (-3 to +3 cm/s), we also find that the confining field strength B_conf, necessary to reproduce the observed thickness of the tachocline, increases with viscosity nu, with magnetic Prandtl number nu/eta, and with equatorward meridional flow speed. Nevertheless, the resulting B_conf values remain quite reasonable, in the range 10^3-10^4 G, for all parameter combinations considered here. The thickness of the tachocline shows a marked dependence on both time and latitude. A comparison with seismic constraints suggests that best agreement with our models is achieved for the highest values of nu and Prm considered here.Comment: 11 page

    A spatial and spectral maximum entropy method as applied to OVRO solar data

    Get PDF
    We present first results of applying a Maximum Entropy Method (MEM) algorithm that acts in both the spatial and spectral domains to data obtained with the frequency-agile solar interferometer at Owens Valley Radio Observatory (OVRO) taken at 45 frequencies in the range 1 – 18 GHz. The traditional MEM algorithm does not exploit the spatial information available at adjacent frequencies in the OVRO data, but rather applies separately to each frequency. We seek an algorithm that obtains a global solution to the visibilities in both the spatial and spectral domains. To simplify the development process, the algorithm is at present limited to the one-dimensional spatial case. We apply our 1-d algorithm to observations taken with the OVRO frequency-agile interferometer of active region AR 5417 near the solar limb on March 20, 1989 (vernal equinox). The interferometer's two 27 m antennas and 40 m antenna were arranged in a linear east-west array, which at the vernal equinox gives a good match to the 1-d algorithm. Our results show that including the spectral MEM term greatly improves the dynamic range of the reconstructed image compared with a reconstruction without using this information. The derived brightness temperature spectra show that for AR 5417 the dominant radio emission mechanism is thermal gyroresonance and we use this information to deduce the spatial variation of electron temperature and magnetic field strength in the corona above the active region

    Rotation profiles of solar-like stars with magnetic fields

    Full text link
    The aim of this work is to investigate rotation profile of solar-like stars with magnetic fields. A diffusion coefficient of magnetic angular momentum transport is deduced. Rotating stellar models with different mass are computed under the effect of the coefficient. Then rotation profiles are obtained from the theoretical stellar models. The total angular momentum of solar model with only hydrodynamic instabilities is about 13 times larger than that of the Sun at the age of the Sun, and this model can not reproduce quasi-solid rotation in the radiative region. However, not only can the solar model with magnetic fields reproduce an almost uniform rotation in the radiative region, but its total angular momentum is consistent with helioseismic result at the level of 3 σ\sigma at the age of the Sun. The rotation of solar-like stars with magnetic fields is almost uniform in the radiative region. But there is an obvious transition region of angular velocity between the convective core and the radiative region of models with 1.2 - 1.5 MM_{\odot}, where angular velocity has a sharp radial change, which is different from the rotation profile of the Sun and massive stars with magnetic fields. Moreover the changes of the angular velocity in the transition region increase with the increasing in the age and mass.Comment: Accepted for publication in ChjA

    Safety of bazedoxifene in a randomized, double-blind, placebo- and active-controlled phase 3 study of postmenopausal women with osteoporosis

    Get PDF
    Background. We report the safety findings from a 3-year phase 3 study (NCT00205777) of bazedoxifene, a novel selective estrogen receptor modulator under development for the prevention and treatment of postmenopausal osteoporosis. Methods. Healthy postmenopausal osteoporotic women (N = 7,492; mean age, 66.4 years) were randomized to daily doses of bazedoxifene 20 or 40 mg, raloxifene 60 mg, or placebo for 3 years. Safety and tolerability were assessed by adverse event (AE) reporting and routine physical, gynecologic, and breast examination. Results. Overall, the incidence of AEs, serious AEs, and discontinuations due to AEs in the bazedoxifene groups was not different from that seen in the placebo group. The incidence of hot flushes and leg cramps was higher with bazedoxifene or raloxifene compared with placebo. The rates of cardiac disorders and cerebrovascular events were low and evenly distributed among groups. Venous thromboembolic events, primarily deep vein thromboses, were more frequently reported in the active treatment groups compared with the placebo group; rates were similar with bazedoxifene and raloxifene. Bazedoxifene showed a neutral effect on the breast and an excellent endometrial safety profile. The incidence of fibrocystic breast disease was lower with bazedoxifene 20 and 40 mg versus raloxifene or placebo. Reductions in total and low-density lipoprotein levels and increases in high-density lipoprotein levels were seen with bazedoxifene versus placebo; similar results were seen with raloxifene. Triglyceride levels were similar among groups. Conclusion. Bazedoxifene showed a favorable safety and tolerability profile in women with postmenopausal osteoporosis. © 2010 Christiansen et al; licensee BioMed Central Ltd.link_to_subscribed_fulltex

    Comparisons of Supergranule Characteristics During the Solar Minima of Cycles 22/23 and 23/24

    Full text link
    Supergranulation is a component of solar convection that manifests itself on the photosphere as a cellular network of around 35 Mm across, with a turnover lifetime of 1-2 days. It is strongly linked to the structure of the magnetic field. The horizontal, divergent flows within supergranule cells carry local field lines to the cell boundaries, while the rotational properties of supergranule upflows may contribute to the restoration of the poloidal field as part of the dynamo mechanism that controls the solar cycle. The solar minimum at the transition from cycle 23 to 24 was notable for its low level of activity and its extended length. It is of interest to study whether the convective phenomena that influences the solar magnetic field during this time differed in character to periods of previous minima. This study investigates three characteristics (velocity components, sizes and lifetimes) of solar supergranulation. Comparisons of these characteristics are made between the minima of cycles 22/23 and 23/24 using MDI Doppler data from 1996 and 2008, respectively. It is found that whereas the lifetimes are equal during both epochs (around 18 h), the sizes are larger in 1996 (35.9 +/- 0.3 Mm) than in 2008 (35.0 +/- 0.3 Mm), while the dominant horizontal velocity flows are weaker (139 +/- 1 m/s in 1996; 141 +/- 1 m/s in 2008). Although numerical differences are seen, they are not conclusive proof of the most recent minimum being inherently unusual.Comment: 22 pages, 5 figures. Solar Physics, in pres

    Subsurface Meridional Circulation in the Active Belts

    Full text link
    Temporal variations of the subsurface meridional flow with the solar cycle have been reported by several authors. The measurements are typically averaged over periods of time during which surface magnetic activity existed in the regions were the velocities are calculated. The present work examines the possible contamination of these measurements due to the extra velocity fields associated with active regions plus the uncertainties in the data obtained where strong magnetic fields are present. We perform a systematic analysis of more than five years of GONG data and compare meridional flows obtained by ring-diagram analysis before and after removing the areas of strong magnetic field. The overall trend of increased amplitude of the meridional flow towards solar minimum remains after removal of large areas associated with surface activity. We also find residual circulation toward the active belts that persist even after the removal of the surface magnetic activity, suggesting the existence of a global pattern or longitudinally-located organized flows.Comment: 12 pages, 6 figures, Submitted to Solar Physics. Accepted (08/25/2008
    corecore