
ASTRONOMY & ASTROPHYSICS APRIL I 1997, PAGE 181

SUPPLEMENT SERIES

Astron. Astrophys. Suppl. Ser. 122, 181-192 (1997)

A spatial and spectral maximum entropy method as
applied to OVRO solar data
R.W. Komm, G.J. Hurford, and D.E. Gary

Solar Astronomy 264-33, Caltech, Pasadena, CA 91125, U.S.A.

Received September 23, 1995; accepted June 8, 1996

Abstract. We present first results of applying a
Maximum Entropy Method (MEM) algorithm that acts
in both the spatial and spectral domains to data obtained
with the frequency-agile solar interferometer at Owens
Valley Radio Observatory (OVRO) taken at 45 frequencies
in the range 1− 18 GHz. The traditional MEM algorithm
does not exploit the spatial information available at ad-
jacent frequencies in the OVRO data, but rather applies
separately to each frequency. We seek an algorithm that
obtains a global solution to the visibilities in both the spa-
tial and spectral domains. To simplify the development
process, the algorithm is at present limited to the one-
dimensional spatial case. We apply our 1-d algorithm to
observations taken with the OVRO frequency-agile inter-
ferometer of active region AR 5417 near the solar limb on
March 20, 1989 (vernal equinox). The interferometer’s two
27 m antennas and 40 m antenna were arranged in a linear
east-west array, which at the vernal equinox gives a good
match to the 1-d algorithm. Our results show that includ-
ing the spectral MEM term greatly improves the dynamic
range of the reconstructed image compared with a re-
construction without using this information. The derived
brightness temperature spectra show that for AR 5417 the
dominant radio emission mechanism is thermal gyrores-
onance and we use this information to deduce the spa-
tial variation of electron temperature and magnetic field
strength in the corona above the active region.

Key words: Sun: corona — Sun: magnetic fields —
Sun: radio radiation — techniques: image processing —
techniques: interferometric

1. Introduction

In this paper, we present a Maximum Entropy Method
(MEM) algorithm that acts in both the spatial and spec-
tral domains and we show first results of applying this
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algorithm to data obtained with the frequency-agile so-
lar interferometer at Owens Valley Radio Observatory
(OVRO). The data are taken at 45 frequencies in the range
1 − 18 GHz and measure the Fourier components of the
brightness distribution, where each frequency measures a
different spatial component. The measured Fourier data
are used to reconstruct an image in the spatial domain, as
a function of position and frequency, to provide brightness
temperature spectra at each point which can be analyzed
and interpreted in terms of physical parameters such as
coronal magnetic field strength and electron temperature.
The number of observed Fourier components can be quite
large depending on the array and the length of the observ-
ing time, but not all Fourier components will be measured
which can lead to ambiguities in interpreting the data.
Thus, one has to address the problem of missing infor-
mation or incomplete (uv) coverage. Imaging algorithms,
such as CLEAN or the standard MEM algorithm, fill in
the unmeasured Fourier components by using a priori in-
formation about what the radio source is expected to look
like. However, the existing algorithms do not exploit the
spatial information available at adjacent frequencies in the
OVRO data. These algorithms treat each frequency sep-
arately which leads to a reconstructed image consisting
of 45 independent spatial maps. We present an algorithm
that obtains a global solution to the visibilities in both
the spatial and spectral domains.

The spatial term in the traditional least-squares MEM
maximizes a spatial entropy term Sspa = −

∑
T lnT ,

where T is the map temperature as a function of spatial
position and frequency, subject to the data constraints.
This ensures that the resulting image is spatially smooth
and that it is positive everywhere. In our modified algo-
rithm, we include an analogous spectral entropy term de-
fined as Sspe = −

∑
τ ln τ , with τ = 1 + |T −T ′| where T ′

is the temperature interpolated from the two neighboring
frequencies at the same spatial position. This term ensures
that a spectrum at a given spatial position changes only
smoothly with frequency. In this paper, the algorithm is
described in one spectral and two spatial dimensions, but
is applied only for the case of one spatial and one spectral
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dimension for several reasons: (1) To simplify the develop-
ment process; (2) To speed up exploration of the relevant
parameter space; (3) To make presentation of the results
simpler (we display the one spectral and one spatial di-
mension as 2-d contour plots, whereas two spatial and one
spectral dimensions would require presentation of a data-
cube). A subsequent paper is planned to describe the full
algorithm as applied to one spectral and two spatial di-
mensions.

In Sect. 2, we describe the concept and its current im-
plementation. In Sect. 3, we apply our 1-d algorithm to
observations taken with the OVRO frequency-agile inter-
ferometer of active region AR 5417 near the solar limb
on March 20, 1989 (vernal equinox) using the two 27-m
antennas and the 40-m antenna arranged in a linear east-
west array. The geometry of an east-west array on this
date gives strictly 1-d spatial resolution, and so gives a
good match to the 1-d algorithm. We compare the result
of our MEM algorithm with the source structure shown on
1-d OVRO maps obtained using the conventional CLEAN
algorithm, and with a reconstruction using only the spa-
tial MEM term of our algorithm. Then, we use the recon-
structed image to calculate brightness temperature spec-
tra and to derive physical parameters.

2. The spatial and spectral MEM algorithm

2.1. The concept

Although the data used in subsequent sections were ob-
tained with a linear array of three antennas as noted
above, our ultimate goal for the algorithm is to apply it
to data from the 5-element solar interferometer at Owens
Valley Radio Observatory (OVRO). This array currently
consists of two 27-m antennas and three 2-m antennas
with frequency-agile receivers, and is capable of generat-
ing 2-dimensional maps of solar sources at 45 frequencies
in the range 1 − 18 GHz. See Gary & Hurford (1994) for
an example of observations with the complete five-element
array. The algorithm is thus being developed to handle
fully three-dimensional data (one spectral and two spatial
dimensions). Since this is the more general case, in this
subsection we conceptually describe the complete 3-d al-
gorithm. We implement and apply it to the simpler case
of one spatial dimension in subsequent sections.

A typical interferometer array measures the spatial
Fourier components of the brightness distribution at each
frequency, ν, and the observations consist of data pairs of
flux amplitude, Aν,b, and phase, φν,b, as a function of fre-
quency, ν, and baseline, b. Each data pair represents one
point in a complex visibility plane:

Aν,b eiφν,b ≡ Vν(u, v). (1)

The image of the observed radio source or its “true”
map, T (x, y, ν), as a function of spatial position and fre-

quency has to be positive everywhere (continuum emis-
sion), and is related to the data via a Fourier transform.

Vν(u, v) = kν2

∫ ∫
T (x, y, ν)ei2πuxei2πvydxdy + noise

≡ Xν,b + iYν,b , (2)

with

Xν,b = kν2

∫ ∫
T (x, y, ν)

[
cos 2πux cos 2πvy

− sin 2πux sin 2πvy
]

dx dy + noise , (3)

Yν,b = kν2

∫ ∫
T (x, y, ν)

[
cos 2πux sin 2πvy

+ sin 2πux cos 2πvy
]

dx dy + noise , (4)

where k is the Boltzmann constant, x and y are the spa-
tial coordinates and u = νbx/c and v = νby/c are the
corresponding spatial frequencies, which are functions of
observing frequency, ν, and projected baseline lengths, bx
and by. For spatially 1-d data (v = 0), this relation reduces
to

Xν,b = kν2

∫
T (x, y, ν) cos 2πux dx + noise , (5)

Yν,b = kν2

∫
T (x, y, ν) sin 2πux dx + noise . (6)

The measurement consists of a finite number of gen-
erally unevenly spaced points in the Fourier domain. To
reconstruct an image of the radio source, unmeasured
Fourier components have to be taken into account. If they
are simply set to zero, the resulting “dirty map” will show
strong sidelobes, which can make it difficult to interpret
the image. Thus, our objective is to approximate the true
image with more likely values than zero for the unmea-
sured components, but without violating the data con-
straints; a general discussion of the imaging problem for
radio data can be found in Christiansen & Hogbom (1985)
and Cornwell & Braun (1989). Since the antennas of the
OVRO solar array are equipped with frequency-agile re-
ceivers and existing algorithms such as CLEAN (Högbom
1974) or standard MEM do not take advantage of the spa-
tial information available at adjacent frequencies, we wish
to develop an algorithm that obtains a global solution to
the visibilities in both the spatial and spectral domains.

For this task, following the usual procedure for a MEM
algorithm, we chose a maximum entropy method which
allows us to reconstruct a temperature map consistent
with the data with the least amount of added a priori
information or with the fewest assumptions. Narayan &
Nityananda (1986) give a good description of MEM and
its application to radio data, for a more general descrip-
tion of MEM see, for example, Bevensee (1993). The stan-
dard least-squares MEM ensures that the resulting image
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is spatially smooth and that it is positive everywhere. We
add to it the information or assumption that a spectrum
at a given spatial position changes only smoothly with
frequency. Thus, our goal can be defined as finding the
temperature map, T (n)(x, y, ν), which maximizes the fol-
lowing objective function:

r(n) = λS(n)
spa + ψ S(n)

spe − ∆(n) , (7)

where S
(n)
spa and S

(n)
spe are the spatial and the spectral en-

tropy terms, ∆(n) is the data constraint, λ and ψ are two
(adjustable) Lagrange multipliers and n is the iteration
index.

As in standard MEM, the data constraint is expressed
as a least-squares term

∆(n) =
1

Nν

1

Nb

∑
ν,b

1

η2
ν,b

[
(X

(n)
ν,b −Xν,b)

2 +(Y
(n)
ν,b −Yν,b)

2
]
(8)

where Xν,b and Yν,b are the measured data and X
(n)
ν,b and

Y
(n)
ν,b are calculated from the iterated temperature map

using Eqs. (3) and (4), Nν is the number of frequencies
and Nb is the number of baselines. The squared deviation
is weighted by the measurement error η2

ν,b.
The spatial MEM term is defined, again as in standard

MEM, as follows

S(n)
spa = −

∑
x,y,ν

T (n) ln T (n) , T (n) = T (n)(x, y, ν) , (9)

with map temperature, T , being a function of spatial po-
sition and frequency.

The traditional least-squares MEM maximizes the spa-

tial entropy term, S
(n)
spa , subject to the data constraints,

∆(n). In our modified algorithm, we include a spectral en-

tropy term, S
(n)
spe , which we define in analogy to the spatial

term

S(n)
spe = −

∑
x,y,ν

τ (n) ln τ (n) , (10)

with

τ (n) = 1 + |T (n) − T ′(n)| . (11)

The interpolated temperature, T ′(n), is a function of
spatial position and frequency and is logarithmically in-
terpolated from the temperatures at the two neighboring
frequencies ν+ and ν− at the same spatial position

lnT ′(n)
ν = lnT (n)

ν− +
lnT

(n)
ν+ − lnT

(n)
ν−

ln ν+ − lnν−
(ln ν − lnν−). (12)

This can be alternatively written as

T ′ (n)
ν = exp

[
lnT (n)

ν−

(
ln ν+ − ln ν

ln ν+ − ln ν−

)

+ lnT (n)
ν+

(
ln ν − ln ν−

ln ν+ − ln ν−

)]
, (13)

or further simplified to

T ′ (n)
ν = T (n)

ν−

(
ln ν+− ln ν

ln ν+− ln ν−
)
T (n)
ν+

(
ln ν− ln ν−

ln ν+− ln ν−
)
. (14)

In our implementation, we use Eq. (13) to calculate T ′

and as can be easily seen in Eq. (14) the exponents are
only frequency dependent and can be calculated outside
the iteration loop. The difference |T (n)− T ′(n)| (Eq. (11))
is small if the map is smooth in frequency and large oth-
erwise, thus ensuring spectral smoothness. Since this dif-
ference can be exactly zero, we added a constant of unity
so that Sspe is zero when T ′(n) equals T (n).

To maximize the objective function r(n) we have to
calculate its derivative with respect to the temperature,
T , at each spatial position and frequency. This equation
is the central part of the algorithm. We like to point out
that throughout the rest of this paper, as in the actual
algorithm, we use an equivalent formalism and minimize
the “negentropy”, −S, instead of maximizing the entropy.

d r(n)

dT
=

d ∆(n)

dT
+ λ

dS
(n)
spa

dT
+ ψ

dS
(n)
spe

dT
. (15)

The data constraint derivative has the following form

d∆(n)

dT
= 2kν2δxδy

1

Nν

1

Nb

∑
b

1

η2
ν,b

[
(X

(n)
ν,b −Xν,b)×[

cos 2πux cos 2πvy − sin 2πux sin 2πvy
]

+ (Y
(n)
ν,b − Yν,b)×[

cos 2πux sin 2πvy + sin 2πux cos2πvy
] ]

(16)

with δx and δy being the pixel size in the x- and y-
direction. For 1-d data (v = 0), the data constraint deriva-
tive reduces to

d∆(n)

dT
= 2kν2δx

1

Nν

1

Nb

∑
b

1

η2
ν,b

[
(X

(n)
ν,b −Xν,b) cos 2πux

+ (Y
(n)
ν,b − Yν,b) sin 2πux

]
. (17)

The derivative of the spatial entropy term is simply

dS
(n)
spa

dT
= 1 + ln T (n) . (18)

The derivative of the spectral entropy term consists of
three terms similar to Eq. (18) since T contributes to τ(ν),

τ(ν+), and τ(ν−). The terms
dτ(ν+)

dT and
dτ(ν−)

dT are easily
derived from Eq. (14). The superscript (n) is omitted for
clarity.

dS
(n)
spe

dT
= (1 + ln τ(ν))

dτ(ν)

dT
+ (1 + ln τ(ν+))

dτ(ν+)

dT

+ (1 + ln τ(ν−))
dτ(ν−)

dT
, (19)
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with

dτ(ν)

dT
= (±1)

{
+1, T > T ′;
−1, T < T ′

, (20)

dτ(ν+)

dT
=

(
ln ν++ − ln ν+

ln ν++ − ln ν

)
T ′(ν+)

T (ν)
(±1){

+1, T ′(ν+) > T ;
−1, T ′(ν+) < T

, (21)

dτ(ν−)

dT
=

(
ln ν− − ln ν−−
ln ν − ln ν−−

)
T ′(ν−)

T (ν)
(±1){

+1, T ′(ν−) > T ;
−1, T ′(ν−) < T

, (22)

where ν++ is one frequency up from ν+ and ν−− is one
frequency down from ν−. This means that while T ′ is
determined from its nearest two neighbors in frequency,
dS(n)

spe

dT
is calculated using the nearest four neighbors. At

the ends of the frequency range, the highest and lowest
frequencies, νN and ν1, have to be treated separately. The
ratios of logarithms of frequencies in Eqs. (21) and (22)
are about 1

2
and are easily extrapolated for the highest

and the lowest frequencies by assuming that the spacing
between frequencies stays the same. At the upper bound-
ary, we substitute the values of T ′ and τ at νN−1 for the
ones at the frequencies νN and νN+1, and at the lower
boundary, we substitute their values at ν2 for the ones at
the frequencies ν1 and ν0.

In standard MEM, the choice of Lagrange multiplier
λ is problematic, and generally must be done with trial
and error for a particular application. Our algorithm com-
pounds the problem by introducing an additional parame-
ter ψ. We now discuss the choice of these Lagrange multi-
pliers for this application. The reconstruction starts with
an initial temperature map, such as a “flat” map or a
model of the source, and ends with a final map which is
the reconstructed image. The Lagrange multipliers, λ and
ψ, have to balance the three terms of dr

dT
in Eq. (15). The

spatial entropy term,
dSspa

dT , is always positive, while the

spectral entropy term,
dSspe

dT , can be either positive, neg-

ative or zero. The data term, d∆
dT , is negative if the initial

map is a flat map. Thus, the temperature, T , will increase
if dr

dT
is negative and decrease if dr

dT
is positive. The initial

map is chosen to be smooth everywhere. Therefore, the
spectral entropy term will be zero at the first iteration
and will remain very small at the first few iterations, and,
as a consequence, λ can be determined from the initial
map and the data constraint.

d r(1)

dT
=

d ∆(1)

dT
+ λ

dS
(1)
spa

dT
. (23)

The parameter, λ, has to be small enough to allow the
temperature to increase from the initial value at any point

in the map, where the source of interest is present, while λ
should also be large enough to ensure that the temperature
stays at the initial value or increases only slightly at other
points. If the initial map is a flat map characterized by a
single temperature Tmin = T (1), this requirement leads to
the following relation

λ <
1

1 + lnTmin
min

(
−

d∆(1)

dT

)
(24)

for all points in the map where the source of interest is
present. This relation provides an upper limit for λ and
since the objective is to reproduce the source and at the
same time to reduce ripples due to unmeasured Fourier
components, this is the optimum value to use.

For the parameter ψ, an analogous relation to Eq. (24)
is not useful because most of the iterated maps would have
to be taken into account, not just the initial one. To deter-
mine the best value of ψ, we reconstructed several maps
using different values of ψ with the same λ, derived from
Eq. (24), and then compared the spectra of the different

maps. As an initial value of ψ, we note that the term
dSspe

dT

is most likely smaller than
dSspa

dT since τ is the difference
of two temperatures, thus ψ = λ is a good lower limit. For
a small ψ, the reconstruction will not differ much from a
reconstruction using the spatial entropy term alone. With
increasing ψ, the sidelobes will be steadily reduced, and
the spectra will appear steadily smoother, but the overall
spectral shape should remain the same. When ψ gets too
large, however, the spectral slopes begin to decrease due to
overly weighting the spectral smoothness parameter. We
have found that this change in spectral character is very
pronounced and easily discerned. The optimum value of
ψ is then the largest value before which this artificial flat-
tening occurs. We do not yet have enough experience to
say whether the optimum value of ψ will be similar for
all sources (and spectral shapes), or whether the above
procedure must be followed for each individual data set.

2.2. The 1-d data

We apply our 1-d algorithm to observations taken with
the OVRO frequency-agile interferometer of active region
AR 5417 near the solar limb on March 20, 1989 (vernal
equinox) using the two 27-m antennas and the 40-m an-
tenna arranged in a linear east-west array with the two
27-m dishes at 122 and 488 m east and the 40-m dish
at 1066 m east. The array was operated with an observ-
ing sequence that sampled 45 frequencies in the range
1 − 18 GHz, in both the right- and left-handed circular
polarization every 10 s. The amplitudes and phases were
calibrated with respect to our primary flux calibrator,
3C 84, which in turn was calibrated relative to the flux
standard 3C 286. Unfortunately, the receiver on the 40-m
antenna experienced a hardware problem that resulted in
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no phase lock above 10 GHz, and there was external in-
terference at 1.0 GHz, so the data presented here range
from 1.2− 10 GHz.

For each of the three baselines, we analyze the observa-
tions at the 31 frequencies in the range 1.2−10 GHz taken
between 21:05 UT and 23:58 UT. The projected baselines
change during this time due to Earth rotation, resulting
in fringe spacings that range from 6.8′′ at 10 GHz to 276′′

at 1.2 GHz. By dividing the data into 80 time samples, we
get Nb = 240 Fourier points at each observed frequency.
To adequately map the active region, we use a map size of
256′′ (with a shift of 23′′ from the nominal phase center to
bring the solar limb to the center of the map) and a spatial
resolution or pixel size of 1′′. The lowest frequency deter-
mines the necessary map size, while the highest frequency
determines the required spatial resolution.

Since the active region was located close to the solar
limb, we have to correct for the interferometer response to
the solar limb. For this purpose, we calculated its response
to a uniform disk of the size of the Sun when pointed to the
edge of the disk. We used the quiet Sun temperatures mea-
sured by Zirin et al. (1991) as the frequency-dependent
disk temperature. The resulting amplitudes were gener-
ally less than 0.1 sfu (solar flux units) which is within the
assumed measurement error (see Eq. (27) below). We sub-
tracted the limb response from the observed data and used
the corrected data pairs for the reconstruction.

2.3. The 1-d implementation

In this section, we describe the current implementation of
our MEM algorithm and give parameter values used to
reconstruct an image of active region AR 5417. Different
implementations of the MEM algorithm have their ad-
vantages and disadvantages, as discussed by Narayan
& Nityananda (1986). After some testing of different
schemes, we chose the following method for its speed.

We start with a uniform “flat” map which has the same
temperature Tmin at all frequencies and spatial positions.
For each subsequent iteration n, we evaluate the gradient
dr(n)

dT
at each point of the map (Eq. (15)) and according

to its sign we either increase or decrease the temperature
T (n) by a fraction of its value

T (n+1) =


T (n)

(
1 + γ(n)

)
, dr(n)

dT < −10−6

T (n)
(
1− γ(n)

)
, dr(n)

dT > 10−6

T (n), otherwise.

(25)

The gain, γ(n), is a function of iteration n only, while

T (n) and dr(n)

dT are, in addition, functions of spatial posi-
tion x and frequency ν. We decrease γ exponentially with
n to make sure that changes in T are getting smaller the
closer T gets to the actual temperature value.

γ(n) = exp

[(
lnγ(nmax) − ln γ(1)

nmax − 1

)
(n− 1) + ln γ(1)

]
,

n = 1, nmax (26)

where γ(nmax), γ(1), and nmax are parameters to be speci-
fied.

The parameters have to be chosen so that any real
solar temperature is within the range of reconstructable
temperatures; i.e the initial temperature, Tmin , has to be
much smaller than any solar temperature and the largest
possible iterated temperature has to be much larger than
the largest solar temperature. In addition, the parameters
have to be chosen so that the increase at the beginning is
not too large in order not to “freeze in” an early iteration;
a large γ(1) requires a small Tmin. We set the final gain,
γ(nmax), to 0.001 and we use the following additional pa-
rameter values of Tmin = 100, nmax = 250, γ(1) = 0.5 to
fulfill the constraints.

For the measurement error, ην,b (in sfu), we use the
following relation

ην,b = 0.05Aν,b + 0.1 (27)

with Aν,b being the amplitude.
To estimate the Lagrange multiplier λ for the OVRO

data of AR 5417, we used Eq. (24), calculated d∆(1)

dT for
the whole map, and from a dirty map reconstruction esti-
mated the position of the source in the map. This led to
the following relation at spatial positions where a source
is present:

1 <
1

Nb

∑
b

1

η2
ν,b

[
(X

(n)
ν,b −Xν,b) cos 2πux

+ (Y
(n)
ν,b − Yν,b) sin 2πux

]
. (28)

The chosen flat map temperature Tmin adds the factor
(1 + lnTmin)−1 = 0.2. The estimated value of λ is then

λ = 0.2

(
2kν2δx

Nν

)
. (29)

With this value of λ, we calculated several reconstruc-
tions using different values of ψ. We found that ψ = λ
was too small to yield improvements beyond those for a
reconstruction using the spatial entropy term alone and
that ψ ≥ 3λ eliminated all ripples but flattened the spec-
tra at high frequencies. Thus, the “best” value of ψ for
the analyzed data was chosen to be

ψ = 2λ = 0.4

(
2kν2δx

Nν

)
. (30)

After the MEM reconstruction was done, the recon-
structed map was convolved with the so-called “clean”
beam, a Gaussian fit to the inner part of the actual beam,
to limit the effect of “superresolution” (e.g. Cornwell &
Braun 1989). All imaging algorithms produce some degree
of superresolution since they estimate unmeasured Fourier
components; i.e. the reconstructed image shows structures
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on spatial scales smaller than the fringe spacing of the
largest baseline. A superresolution of a factor two or less
is generally acceptable (cf. Narayan & Nityananda 1986).
In our case, we have an additional complication due to the
added spectral term which causes the reconstructed map
to be spatially not as smooth as it would be without this
term, which produces “signal” at high spatial frequencies.
We compared spatial power spectra of the convolved re-
stored map with power spectra of the corresponding dirty
map and found that the largest spatial frequency present
in the reconstructed map is comparable to the one in the
dirty map within a factor of 1.5 or less. This implies that
convolving with the clean beam sufficiently limits the in-
fluence of superresolution and that at the same time its
effect is limited enough to preserve the spatial information
present in the original data.

In our initial algorithm, used to create the maps
in this paper, we directly compute the Fourier trans-
form (Eqs. (5) and (6)) which has the advantage of
simplicity over the Fast Fourier Transform (FFT) in
that it does not require gridding of the visibilities (see
Thompson et al. 1991). However, in looking ahead to the
2-d version of the algorithm, execution time becomes more
important than simplicity. Therefore, we have extended
our 1-d algorithm to perform gridding and employ the
FFT. Because gridding of multifrequency data introduces
special problems, we briefly outline the gridding process
here. The gridding process is described mathematically
in terms of convolution and resampling, where an appro-
priate convolution function has to be chosen. A simple
choice for a convolution function, and the one we employ,
is a rectangular function (cell averaging); the (uv) plane
is divided into rectangular cells of dimension ∆u by ∆v
centered on the grid point and all measurements within
each cell are assigned to the grid point.

The problem introduced with gridding of multifre-
quency data lies in its smoothing effect on the visibilities.
For example, if we divide the spatial frequencies between
0 and the Nyquist frequency, kN, into 512 grid points and
use a pixel size of 1′′ (kN = 1

2′′
), the Nb = 240 obser-

vations occupy 106 grid points at 10 GHz and only 15
at 1.2 GHz. To reduce the amount of smoothing at lower
frequencies, we divide our frequency range 1.2 − 10 GHz
into three ranges with different spatial resolution and grid
each range separately. We choose a low-frequency range
(1.2 − 2.6 GHz) with a pixel size of 4′′, a mid-frequency
range (2.8−5.0 GHz) with 2′′, and a high-frequency range
(5.2−10.0 GHz) with 1′′ to ensure that the smoothing in-
troduced by the gridding process remains within a factor
of two to five. The combined effect of using FFT instead of
direct Fourier transform, gridding and dividing into ranges
with different spatial resolution reduces the execution time
of the MEM algorithm by a factor of ∼ 20, for the same
1-d algorithm. The gain is even greater when extended to
2-d.

BBSO White Light

BBSO Magnetogram

Fig. 1. A white-light image and a magnetogram of active re-
gion AR 5417 near the solar limb on March 20, 1989 (vernal
equinox) from BBSO. The radio image at 3.6 GHz (covering
256′′) is superposed for comparison

3. Application of the algorithm to active region
AR 5417

3.1. Active region mapping

Figure 1 shows a white-light image and a magnetogram of
AR 5417 taken at Big Bear Solar Observatory (BBSO).
The east limb can be seen on the left side of the images,
and lines of solar longitude (in steps of 10◦) and latitude
(south 20◦ and 30◦) are shown superposed. The leading
sunspot shows positive polarity and the following sunspot
shows negative polarity. The active region is surrounded
by areas of negative polarity. The radio image at 3.6 GHz
covering 256′′ (cf. Fig. 4), which was reconstructed from
the observations taken between 21:05 UT and 23:58 UT,
is superposed for comparison. Note that the radio signal
shows two sources, one of them coincides with the active
region, while the westward source coincides with the loca-
tion of an earlier M3.1 flare which erupted at 20:38 UT,
about half an hour before our observing time, reached its
maximum in soft X-rays at 20:52 UT (about 10 min before
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Fig. 2. The CLEAN reconstruction. The spatial information encoded in the spectrum is not used. The contours are at logarithmic
intervals to bring out the lower level sidelobes. (contour 4: Tb = 104 K, contour 5: Tb = 105 K, contour 6: Tb = 106 K)

Fig. 3. The spatial MEM reconstruction. The spatial information encoded in the spectrum is not used. The contours are at
logarithmic intervals to bring out the lower level sidelobes. (contour 4: Tb = 104 K, contour 5: Tb = 105 K, contour 6: Tb = 106 K)
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Fig. 4. The reconstructed map using the spatial/spectral MEM algorithm. The contours are at logarithmic intervals to show
an improvement in sidelobe level in comparison with Figs. 2 and 3. (contour 4: Tb = 104 K, contour 5: Tb = 105 K, contour 6:
Tb = 106 K)

our observations began), but took several hours to decay.
The Big Bear images were taken at 20:01 UT, before the
flare occcured.

Figures 2 and 3 show two image reconstructions of the
left-hand circular polarization using conventional meth-
ods where spectral information is not used. The contours
in the figures are in brightness temperature, Tb, expressed
in a logarithmic scale (contour 4: Tb = 104 K, contour 5:
Tb = 105 K, contour 6: Tb = 106 K). Figure 2 shows a
reconstruction using the CLEAN algorithm, while Fig. 3
shows a reconstruction using only the spatial part of our
MEM algorithm (ψ = 0). The two reconstructions show a
single radio source extending on the spatial axis scale from
about 0′′ to +100′′ at frequencies below about 2.5 GHz.
Both show that the active region centered at about +29′′

is visible at all higher frequencies, and they both show the
flare-related source to the right of the active region. Other
features are sidelobes, which are more pronounced in the
corresponding dirty map not shown here. The largest
sidelobe temperatures are about one order of magnitude
smaller than the temperatures of the active region; both
reconstructions suppress sidelobes by about one order of
magnitude.

Figure 4 shows the reconstruction of the same radio
data using the additional spectral information. The spa-
tial/spectral MEM algorithm reconstruction shows the

same sources seen in the two previous figures, but the
sidelobes are suppressed by almost two orders of magni-
tude, which shows that including the spectral information
greatly improves the dynamic range. This improvement is
best illustrated by directly comparing brightness temper-
ature maps at a given frequency as in Fig. 5 which shows
maps at frequencies (a) 2.0 GHz, (b) 5.0 GHz, (c) 7.0 GHz,
and (d) 9.0 GHz derived from the spatial/spectral MEM
reconstruction (filled gray areas), the spatial MEM re-
construction (solid line) and the CLEAN reconstruction
(dashed line). Note that the amplitude scale is logarith-
mic. Even where the spatial/spectral MEM map shows
relatively strong sidelobes, as in Fig. 5b, the sidelobes are
about one order of magnitude smaller than in the other
two reconstructions.

The reconstructed image of the right-hand circular po-
larization data is very similar to that in Fig. 4 indicating
that the degree of polarization is low. This is to be ex-
pected for observations near the limb (cf. Lee et al. 1993),
where the magnetic field lines are nearly perpendicular to
the line of sight. Spectra from the spatial/spectral MEM
reconstruction in both right- and left-hand polarization
are used to derive coronal temperatures and magnetic field
strengths in the next section.

Now, we briefly discuss the flare-related source lo-
cated to the west of the active region. In Hα images
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Fig. 5. The brightness temperature maps at frequencies a) 2.0 GHz, b) 5.0 GHz, c) 7.0 GHz, and d) 9.0 GHz of the spa-
tial/spectral MEM reconstruction (filled gray areas), the spatial MEM (solid line) and the CLEAN reconstruction (dotted
line)

from BBSO, we found that the flare event comprised two
ribbons aligned along the interferometer fringes. Although
the nonthermal radio emission was over by the time of our
observations, the Hα ribbons remained quite bright and
separated slowly in classic post-flare evolution. We know
from events seen with Yohkoh that a large, spatially-static
soft X-ray loop was likely responsible for the continued ra-
dio emission from this location. Due to temporal evolution
of this source, however, which can be different at different
frequencies, we might expect inconsistencies in the recon-
structed image averaged over the entire period as in Fig. 4,
where the flare-related source is located at different spatial
positions at different frequencies from about 80′′ at 3 GHz
to about 70′′ at 6 GHz and shows two separate sources at
higher frequencies centered at about 55′′ and 80′′. Because
the unwanted temporal evolution undoubtedly affects the
spectra of this flare-related source, we do not attempt to
interpret it here. Instead, we focus on the active-region-
related source. To see to what extent the flare-related
source influences the active-region-related source, we di-
vided the data set into six subsets of equal length of about

1
2 hour duration and reconstructed maps from these sub-
sets. Although the reconstructions were based on fewer
visibilities, we found that the active-region-related source
gave a consistently reconstructed morphology in all sub-
sets except the first. In this first subset, an apparent split-
ting of the active-region source above 6 GHz was seen,
likely an inaccurate reconstruction due to temporal vari-
ations in the shape of the flare source during this first
half-hour period. In the other five time periods, the shape
of the flare-related source was quite stable while its bright-
ness decreased slowly. The ratio of flare to active region
maximum temperature, averaged over 2.6− 10.0 GHz, is
1.6 in the first period, decreases to 1.2 in the second, 0.8 in
the third and remains 0.7 in the last three subsets. Thus,
the emission of the active-region-related source integrated
over the entire period should be only slightly affected by
the flare-related source. We assume that the shape of the
active-region-related source is well represented in the syn-
thesis map of Fig. 4. In any case, our main purpose here is
to show the relative improvement of the MEM algorithm
over other reconstruction methods.
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3.2. Active region spectra

Figure 6 shows two examples of brightness temperature
spectra derived from the spatial/spectral MEM recon-
struction (ut), the spatial MEM reconstruction (×), and
the CLEAN reconstruction (+). Some assumptions are
necessary for deducing the brightness temperature from
observations with one-dimensional spatial resolution. At
each iteration of the algorithm, the model brightness tem-
perature map must be converted to solar flux units to
compare with the measured amplitudes. This is done as-
suming an area for each pixel of 1′′ square. Thus, the flux
in each pixel of the 1-d model is imagined to be con-
densed into a single 1′′ pixel along the fringe direction.
The algorithm thus produces a map whose brightness is
too high by the amount of the extent of the source along
the fringes, in arcseconds. Of course, the true source ex-
tent is unknown, but we make the assumption that the
sources are the same size along the fringes as they are
across the fringes (that is, they are circular in shape), and
have corrected the brightness temperatures accordingly.
This modification was made for Figs. 3 and 4, and also in
the spectra that are discussed in this section.

At position +33′′ (Fig. 6a), which corresponds to the
center of the active region source, the spectra stay more
or less flat below about 5 GHz and decrease at higher fre-
quencies with a steep slope of −5, which indicates that
the emission is optically thick below 5 GHz and that ther-
mal gyroresonance is the emission mechanism (e.g. Gary
& Hurford 1994). For an isothermal corona, the optically
thick part of the spectrum should be perfectly flat. The
appearance of apparently real deviations from a flat spec-
trum in Fig. 6 could be due to real variations of tempera-
ture with height in the active region, or could be artificial
due to our assumption of a circularly shaped source at all
frequencies.

The spatial MEM leads generally to slightly higher
temperatures than the spatial/spectral MEM, while
CLEAN produces smaller temperatures. This may be due
to a redistribution of the flux into sidelobes in the lat-
ter case. The transition from optically thick to optically
thin occurs at almost the same frequency and the high-
frequency slope is also more or less the same for the three
different reconstructions. The spatial/spectral MEM re-
construction shows the smoothest spectrum of the three
due to the added frequency constraint, but all three meth-
ods do a reasonable job for this position of the strongest
source in the maps.

At position +39′′ (Fig. 6b), which is farther from the
center of the active region, the spectra are flat for fre-
quencies below 3.4 GHz and the high-frequency slope is
−4 which is still too steep for free-free emission, and so is
likely to be produced by gyroresonance. Again, the tem-
peratures of the spatial MEM reconstruction are, in gen-
eral, slightly higher than the ones of the spatial/spectral
MEM resconstruction, while the CLEAN reconstruction

Fig. 6. The brightness temperature spectra at spatial positions
a) +33′′ and b) +39′′. Each plot shows spectra derived from
the spatial/spectral MEM reconstruction (ut), the spatial MEM
reconstruction (×), and the CLEAN reconstruction (+)

produces smaller temperatures. The high-frequency slope
is easily determined in the spatial/spectral MEM recon-
struction, while it is rather difficult in the other two re-
constructions. This clearly shows the advantage gained by
including the spectral smoothness criterion.

The transition between the optically thick and opti-
cally thin parts of the spectrum is a sharp “kink” in
the spatial MEM reconstruction, while it rolls off more
smoothly in the spatial/spectral MEM reconstruction.
The smooth transition is perhaps an undesired effect
of using the spectral smoothness criterion, so one must
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recognize the potential for artificially smoothing sharp
variations in the spectrum. For larger ψ, this becomes
more pronounced and can, in extreme cases, significantly
alter the spectrum. As discussed in Sect. 2.1, we used this
behavior to determine a value of ψ that minimizes the
unwanted smoothing.

The spectra can be interpreted using knowledge
about radio emission mechanisms such as thermal
bremsstrahlung (free-free) emission and thermal gyroreso-
nance present in the solar corona (e.g., Dulk 1985; Gary &
Hurford 1994). The average brightness temperature of the
flat part of a thermal spectrum gives directly the electron
temperature, Te, independent of the emission mechanism.
Figure 7 shows the electron temperature, Te, derived from
the spectra as a function of spatial position. The solid line
represents Te of the active region centered at about +29′′,
while the dotted line gives Te of the low-frequencies (be-
low 2 GHz) source. The data are smoothed by a 5′′ run-
ning mean. The temperature of the active region is about
3 106 K with a slight maximum at +37′′, while the tem-
perature of the broad single source is everywhere some-
what higher with a broad maximum at +38′′. At spatial
positions > 80′′ and at positions < 14′′, the emission is
optically thin, the presented values are thus lower limits
to the true temperature.

Fig. 7. The electron temperature measured from the flat parts
of the brightness temperature spectra (ν < ντ=1: solid line,
ν < 2 GHz: dotted line)

From the shape of the spectra, we have already noted
that thermal gyroresonance is the dominant emission
mechanism throughout the active region. This allows us
to derive the magnetic field strength in the solar corona

Fig. 8. The total magnetic field strength at the base of the
corona assuming s = 3 everywhere measured from the gyrores-
onance spectra (ν < ντ=1: solid line, ν < 2 GHz: dotted line)

following the procedure described by Gary & Hudford
(1994). The highest magnetic field strength is given by

Bmax =
ντ=1

2.8 106 s
(31)

where s is the harmonic number. The frequency at which
the optical depth is unity (ντ=1) is just above the fre-
quency where the spectrum turns over, so we determine
ντ=1 at 1

e
Te. Since ντ=1 is continous with spatial posi-

tion, we assume s = 3 at all positions following Gary &
Hurford (1994) and Lee et al. (1993). Figure 8 shows the
total magnetic field strength at the base of the corona.
The derived value depends slightly on the value of Te, so
we plot two curves. The solid line shows the magnetic field
strength derived with Te given by the solid line curve in
Fig. 7, while the dotted line uses Te from the dotted line in
Fig. 7. Both temperatures give the same result, that the
magnetic field strength of the active region is about 800 G
with a maximum of 870 G at spatial position +28′′ (which
is 9′′ to the east of the position of maximum temperature).

4. Discussion and conclusion

In this work, we introduce a MEM algorithm that pro-
duces a global solution to the visibilities in both the spa-
tial and spectral domains and we apply its 1-d implemen-
tation to observations of AR 5417 taken with the OVRO
frequency-agile interferometer on March 20, 1989 (vernal
equinox). Our results show that including the spectral
MEM term greatly improves the dynamic range of the
reconstructed image (Fig. 4) compared with a reconstruc-
tion using the CLEAN algorithm (Fig. 2) or a reconstruc-
tion using the spatial MEM term only (Fig. 3). Thus, the
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derived spectra (Fig. 6) show less confusion due to bet-
ter suppression of sidelobes and, as a direct consequence,
physical quantities such as the magnetic field strength can
be determined more reliably.

So far, we have stressed the differences between the dif-
ferent reconstructions to show the strength of our method.
The similarities can be used to discuss the reliability of
the reconstructed image which is a non-trivial problem
common to all imaging algorithms (cf. Christiansen &
Hogbom 1985). An imaging algorithm selects among nu-
merous alternative reconstructions which are compatible
with the data by using assumptions about the radio source
as substitutes for unmeasured Fourier components. Thus,
the reconstructed image is an approximation of the real
image and depends to a certain degree on the underly-
ing assumptions and on the algorithm used. To address
this problem, we repeat the reconstruction with differ-
ent algorithms. The results (Figs. 2-4) show that our spa-
tial/spectral MEM algorithm is indeed stable and reliable.

The reconstructed brightness temperature spectra in
Fig. 6 are spectra typical for active regions with thermal
gyroresonance as the dominant emission mechanism. We
determine the electron temperature in the region to be
Te ∼ 3 106 K (Fig. 7) which is higher than temperatures
of 1− 2 106 K as reported by Gary & Hurford (1994) and
Lee et al. (1993). However, all three different reconstruc-
tions in Fig. 6 show similarly high temperatures, so these
values are not artifacts of any particular reconstruction
algorithm. Therefore, either (1) the electron temperature
was indeed 3 106 K in AR 5417, or (2) we underestimate
the true size of the active region, which is used to scale the
temperatures and which we assumed to be the same along
and across the fringes, or (3) the elevated temperatures
are due to the effects of the flare-related emission. The in-
formation in the data set does not allow us to discriminate
among these explanations.

Using the turnover, or break, in the gyroresonance
spectra, we determine the magnetic field strength of
the active region. We find a maximum field strength
of Bmax ≈ 870 G (Fig. 8), which is low rela-
tive to measurements near the center of the disk
(Gary et al. 1993), but may compare favorably with
measurements near the limb (Lee et al. 1993; Gary &
Hurford 1994). We find that the peak of the magnetic field
strength does not coincide with the peak of the electron

temperature which agrees with observations by Gary &
Hurford (1994) and might be attributed to the fact that
microwave emission appears to be brightest over sunspot
penumbrae rather than their umbrae (e.g., White et al.
1992).

We conclude that the spatial/spectral MEM algorithm
can greatly improve image reconstruction in applications
where the spatial information at different frequencies or
energies is not identical, and can be assumed to vary slowly
with frequency. Future plans include development of the
algorithm for two spatial and one spectral dimensions for
application to data taken with the five-element OVRO
Solar Array. We anticipate that this algorithm will im-
prove the analysis of our data not only due to the im-
provement in dynamic range but also by speeding up the
analysis and making it less subjective (as compared to
CLEAN).
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