24 research outputs found

    Ontop: answering SPARQL queries over relational databases

    Get PDF
    We present Ontop, an open-source Ontology-Based Data Access (OBDA) system that allows for querying relational data sources through a conceptual representation of the domain of interest, provided in terms of an ontology, to which the data sources are mapped. Key features of Ontop are its solid theoretical foundations, a virtual approach to OBDA, which avoids materializing triples and is implemented through the query rewriting technique, extensive optimizations exploiting all elements of the OBDA architecture, its compliance to all relevant W3C recommendations (including SPARQL queries, R2RML mappings, and OWL2QL and RDFS ontologies), and its support for all major relational databases

    The virtual knowledge graph system Ontop

    Get PDF
    Ontop is a popular open-source virtual knowledge graph system that can expose heterogeneous data sources as a unified knowledge graph. Ontop has been widely used in a variety of research and industrial projects. In this paper, we describe the challenges, design choices, new features of the latest release of Ontop v4, summarizing the development efforts of the last 4 years

    Transferrin receptor 2 controls bone mass and pathological bone formation via BMP and Wnt signalling

    Get PDF
    Transferrin receptor 2 (Tfr2) is mainly expressed in the liver and controls iron homeostasis. Here, we identify Tfr2 as a regulator of bone homeostasis that inhibits bone formation. Mice lacking Tfr2 display increased bone mass and mineralization independent of iron homeostasis and hepatic Tfr2. Bone marrow transplantation experiments and studies of cell-specific Tfr2 knockout mice demonstrate that Tfr2 impairs BMP-p38MAPK signaling and decreases expression of the Wnt inhibitor sclerostin specifically in osteoblasts. Reactivation of MAPK or overexpression of sclerostin rescues skeletal abnormalities in Tfr2 knockout mice. We further show that the extracellular domain of Tfr2 binds BMPs and inhibits BMP-2-induced heterotopic ossification by acting as a decoy receptor. These data indicate that Tfr2 limits bone formation by modulating BMP signaling, possibly through direct interaction with BMP either as a receptor or as a co-receptor in a complex with other BMP receptors. Finally, the Tfr2 extracellular domain may be effective in the treatment of conditions associated with pathological bone formation

    Accelerating functional gene discovery in osteoarthritis.

    Get PDF
    Osteoarthritis causes debilitating pain and disability, resulting in a considerable socioeconomic burden, yet no drugs are available that prevent disease onset or progression. Here, we develop, validate and use rapid-throughput imaging techniques to identify abnormal joint phenotypes in randomly selected mutant mice generated by the International Knockout Mouse Consortium. We identify 14 genes with functional involvement in osteoarthritis pathogenesis, including the homeobox gene Pitx1, and functionally characterize 6 candidate human osteoarthritis genes in mouse models. We demonstrate sensitivity of the methods by identifying age-related degenerative joint damage in wild-type mice. Finally, we phenotype previously generated mutant mice with an osteoarthritis-associated polymorphism in the Dio2 gene by CRISPR/Cas9 genome editing and demonstrate a protective role in disease onset with public health implications. We hope this expanding resource of mutant mice will accelerate functional gene discovery in osteoarthritis and offer drug discovery opportunities for this common, incapacitating chronic disease

    Accelerating functional gene discovery in osteoarthritis.

    Get PDF
    Osteoarthritis causes debilitating pain and disability, resulting in a considerable socioeconomic burden, yet no drugs are available that prevent disease onset or progression. Here, we develop, validate and use rapid-throughput imaging techniques to identify abnormal joint phenotypes in randomly selected mutant mice generated by the International Knockout Mouse Consortium. We identify 14 genes with functional involvement in osteoarthritis pathogenesis, including the homeobox gene Pitx1, and functionally characterize 6 candidate human osteoarthritis genes in mouse models. We demonstrate sensitivity of the methods by identifying age-related degenerative joint damage in wild-type mice. Finally, we phenotype previously generated mutant mice with an osteoarthritis-associated polymorphism in the Dio2 gene by CRISPR/Cas9 genome editing and demonstrate a protective role in disease onset with public health implications. We hope this expanding resource of mutant mice will accelerate functional gene discovery in osteoarthritis and offer drug discovery opportunities for this common, incapacitating chronic disease

    Identification of 153 new loci associated with heel bone mineral density and functional involvement of GPC6 in osteoporosis

    Get PDF
    Osteoporosis is a common disease diagnosed primarily by measurement of bone mineral density (BMD). We undertook a genome-wide association study in 142,487 individuals from the UK Biobank to identify loci associated with BMD estimated by quantitative ultrasound of the heel (“eBMD”). We identified 307 conditionally independent SNPs attaining genome-wide significance at 203 loci, explaining approximately 12% of the phenotypic variance. These included 153 novel loci, and several rare variants with large effect sizes. To investigate underlying mechanisms we undertook: 1) bioinformatic, functional genomic annotation and human osteoblast expression studies; 2) gene function prediction; 3) skeletal phenotyping of 120 knockout mice with deletions of genes adjacent to lead independent SNPs; and 4) analysis of gene expression in mouse osteoblasts, osteocytes and osteoclasts. These studies strongly implicate GPC6 as a novel determinant of BMD and also identify abnormal skeletal phenotypes in knockout mice for a further 100 prioritized genes.This part of the work was supported by Genome Quebec, Genome Canada and the Canadian Institutes of Health Research (CIHR). This work was supported by the Medical Research Council (Programme Grant MC_UU_12013/4 to D.M.E.), the Wellcome Trust (Strategic Award grant number 101123; project grant 094134; to G.R.W., J.H.D.B. and P.I.C.), the Netherlands Organization for Health Research and Development ZonMw VIDI 016.136.367 (funding to F.R., C.M.-G. and K.T.), the mobility stimuli plan of the European Union Erasmus Mundus Action 2: ERAWEB (programme funding to K.T.), NIAMS, NIH (AR060981 and AR060234 to C.L.A.-B.), the National Health and Medical Research Council (Early Career Fellowship APP1104818 to N.M.W.), the Swedish Research Council (funding to E.G.), the RĂ©seau de MĂ©decine GĂ©nĂ©tique AppliquĂ©e (RMGA; J.A.M.), the Fonds de Recherche du QuĂ©bec–SantĂ© (FRQS; J.A.M. and J.B.R.), the Natural Sciences and Engineering Research Council of Canada (C.M.T.G.), the J. Gibson and the Ernest Heine Family Foundation (P.I.C.), Arthritis Research UK (ref. 20000; to C.L.G.), the Canadian Institutes of Health Research (J.B.R.), the Jewish General Hospital (J.B.R.), and the Australian Research Council (Future Fellowship FT130101709 to D.M.E.). This research was conducted using the UK Biobank Resource (application number 12703). Access to the UK Biobank study data was funded by the University of Queensland (Early Career Researcher Grant 2014002959 to N.M.W.)

    Transferrin receptor 2 controls bone mass and pathological bone formation via BMP and Wnt signaling

    No full text
    Transferrin receptor 2 (Tfr2) is mainly expressed in the liver and controls iron homeostasis. Here, we identify Tfr2 as a regulator of bone homeostasis that inhibits bone formation. Mice lacking Tfr2 display increased bone mass and mineralization independent of iron homeostasis and hepatic Tfr2. Bone marrow transplantation experiments and studies of cell-specific Tfr2 knockout mice demonstrate that Tfr2 impairs BMP-p38MAPK signaling and decreases expression of the Wnt inhibitor sclerostin specifically in osteoblasts. Reactivation of MAPK or overexpression of sclerostin rescues skeletal abnormalities in Tfr2 knockout mice. We further show that the extracellular domain of Tfr2 binds BMPs and inhibits BMP-2-induced heterotopic ossification by acting as a decoy receptor. These data indicate that Tfr2 limits bone formation by modulating BMP signaling, possibly through direct interaction with BMP either as a receptor or as a co-receptor in a complex with other BMP receptors. Finally, the Tfr2 extracellular domain may be effective in the treatment of conditions associated with pathological bone formation

    Transferrin receptor 2 controls bone mass and pathological bone formation via BMP and Wnt signalling

    No full text
    Transferrin receptor 2 (Tfr2) is mainly expressed in the liver and controls iron homeostasis. Here, we identify Tfr2 as a regulator of bone homeostasis that inhibits bone formation. Mice lacking Tfr2 display increased bone mass and mineralization independent of iron homeostasis and hepatic Tfr2. Bone marrow transplantation experiments and studies of cell-specific Tfr2-knockout mice demonstrate that Tfr2 impairs BMP-p38MAPK signalling and decreases expression of the Wnt inhibitor sclerostin, specifically in osteoblasts. Reactivation of MAPK or overexpression of sclerostin rescues skeletal abnormalities in Tfr2-knockout mice. We further show that the extracellular domain of Tfr2 binds bone morphogenic proteins (BMPs) and inhibits BMP-2-induced heterotopic ossification by acting as a decoy receptor. These data indicate that Tfr2 limits bone formation by modulating BMP signalling, possibly through direct interaction with BMP either as a receptor or as a co-receptor in complex with other BMP receptors. Finally, the Tfr2 extracellular domain may be effective in the treatment of conditions associated with pathological bone formation
    corecore