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ABSTRACT 

Osteoporosis is a common disease diagnosed primarily by measurement of bone mineral 
density (BMD). We undertook a genome-wide association study in 142,487 individuals from 
the UK Biobank to identify loci associated with BMD estimated by quantitative ultrasound of 
the heel (“eBMD”). We identified 307 conditionally independent SNPs attaining genome-wide 
significance at 203 loci, explaining approximately 12% of the phenotypic variance. These 
included 153 novel loci, and several rare variants with large effect sizes. To investigate 
underlying mechanisms we undertook: 1) bioinformatic, functional genomic annotation and 
human osteoblast expression studies; 2) gene function prediction; 3) skeletal phenotyping of 
120 knockout mice with deletions of genes adjacent to lead independent SNPs; and 4) 
analysis of gene expression in mouse osteoblasts, osteocytes and osteoclasts. These 
studies strongly implicate GPC6 as a novel determinant of BMD and also identify abnormal 
skeletal phenotypes in knockout mice for a further 100 prioritized genes. 
 

INTRODUCTION 
 
Osteoporosis is a common age-related disorder characterised by low bone mass and 
deterioration in bone micro-architecture leading to an increase in skeletal fragility and 
fracture risk. Low bone mineral density (BMD) is a strong risk factor for osteoporosis and is a 
key indicator for its diagnosis and treatment 1. BMD is highly heritable 2, and genome-wide 
association studies (GWAS) have identified common variants at 73 loci associated with the 
trait, including many significantly associated with fracture risk 3,4. Recently, deep imputation 
based on whole-genome sequencing, has also identified low frequency variants of large 
effect associated with BMD and fracture risk 4. Despite these advances, common and rare 
variants only explain 5.8% of the total phenotypic variance in BMD 3,4. 
 
Most previous genetic studies of BMD have analysed data derived from dual energy X-ray 
absorptiometry (DXA). However, DXA is expensive and consequently the largest GWAS to 
date of DXA-derived BMD includes only 32,965 individuals4, compromising the ability to 
detect genetic loci. An alternative method of estimating BMD that is quick, safe, relatively 
inexpensive and can therefore be assessed in very large samples of individuals, is derived 
from ultrasound, typically at the heel calcaneus (referred to as estimated BMD “eBMD” in 
this manuscript). Measures of eBMD derived from ultrasound are highly heritable (in the 
order of 50% to 80%) 5-8, are independently associated with fracture risk 9,10, and are 
moderately correlated with DXA derived BMD at the hip and spine (r = 0.4 to 0.6) 11. A 
previous GWAS that used heel ultrasound parameters (N = 15,514) identified variants at 
nine loci, including seven previously associated with lumbar spine/hip BMD 12. 
 
Since genetic loci associated with BMD are strongly enriched for the targets of clinically 
relevant osteoporosis therapies13,14, the discovery of new genetic loci and the biological 
pathways they implicate may help identify drug targets for the prevention and treatment of 
fragility fracture. In order to identify novel genetic determinants of BMD, we performed 
genome-wide association in the UK Biobank Study, which has measured eBMD and 
genome-wide genotypes on 142,487 individuals. We subsequently performed three 
systematic and complementary approaches to prioritize genes for functional validation 
(Supplementary Fig. 1). 
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RESULTS 
 
Genome-wide Association Study of eBMD 
BMD was measured by quantitative ultrasound of the heel, a non-invasive estimate of BMD 
(eBMD) that predicts fracture 9,10. After stringent quality control of both eBMD and genome-
wide genotypes (see Online Methods and Supplementary Fig. 2), data were available from 
142,487 individuals (53% women) (Supplementary Table 1). We tested the additive effect 
of 17,166,351 single nucleotide polymorphisms (SNPs) with minor allele frequency (MAF) > 
0.1% and imputation quality (info) score >0.4 on eBMD, controlling for age, sex and 
genotyping array. In total, 307 conditionally independent SNPs at 203 loci surpassed our 
revised genome-wide significant threshold (P ≤ 6.6 x 10-9, which accounts for the larger 
number of independent SNPs deeply imputed in the UK Biobank, see Online Methods) and 
jointly explained ~12% of the variance in eBMD (Supplementary Fig. 3, Supplementary 
Table 2). Together the 307 SNPs explained about a third of eBMD SNP heritability 
estimated by BOLT-REML (h2

SNP = 0.36). Although there was substantial inflation of the test 
statistics relative to the null (λGC = 1.37), linkage disequilibrium (LD) score regression15 
indicated that the majority of inflation was due to polygenicity rather than population 
stratification (LD Score regression intercept = 1.05). Of the 203 loci identified, 153 (75%) 
regions had not been implicated in previous GWAS of BMD (Supplementary Table 2, 
Supplementary Fig. 3).3,4,16-22 Interestingly, the list of novel associations included multiple 
variants (e.g. SNPs at TBX1, ZNRF3) for which there was extremely strong evidence of 
association with heel eBMD (i.e. P < 10-30), but little evidence of association (p > 0.05 any 
trait) in the previous GEFOS-Seq GWAS of DXA derived BMD4 (Supplementary Table 3). 
 
Our study also replicated SNPs in 55 out of 73 regions (>75%) that had been reported as 
genome-wide significant in previous GWAS of BMD at other body sites (i.e. P < 0.05 and 
consistent direction of effect), and we replicated all genome-wide significant loci identified in 
a previous GWAS of ultrasound heel eBMD12 (Supplementary Table 4). Our list of known 
BMD associated SNPs is deliberately broad and comprehensive in terms of previous GWAS. 
This comprehensive inclusion policy, however, means that we have also incorporated the 
results of some smaller GWAS studies that may include false positives. When we restrict our 
attention to the 64 SNPs reported in the large Estrada et al (2012) GEFOS meta-analysis3 
(which are unlikely to represent type 1 errors), we replicate 54 of 64 (84%) SNPs. Possible 
reasons for non-replicating loci include site specificity, differences in phenotype (ultrasound 
derived versus DXA derived BMD), differences in ancestral population between studies, and 
type 1 error in the smaller previous study. 
 
Notably, across six loci (RSPO3, LINC00326, CPED1, MPP7, KCNMA1, TMEM263), there 
were SNPs that exhibited different directions of effect in the current eBMD study compared 
to previous BMD studies. In the case of the SNPs at CPED1, these also showed an 
association with fracture in UK Biobank (see below), but in the direction predicted by eBMD 
rather than the direction predicted by BMD in previous studies (i.e. alleles that predispose to 
low eBMD are associated with increased risk of fracture). Although these opposite directions 
of association are harder to explain, differences in the phenotype measured by DXA and 
ultrasound technologies are likely to be responsible. For example, whereas heel ultrasound 
primarily measures trabecular bone, DXA-based BMD measurements reflect a combination 
of trabecular and cortical bone. In addition, ultrasound-based measurements are 
independent of bone size, while areal BMD as measured by DXA is not fully size corrected. 
In fact, of the six loci showing opposite associations between DXA BMD and eBMD, three 
also showed strong associations with height in the GIANT consortium in the same direction 
of DXA BMD23, suggesting that the latter relationships may partly have reflected size effects 
(although it must be noted that several other concordant eBMD and DXA BMD associated 
loci also showed associations with height). Whereas bone size and bone mass generally 
show a strong positive correlation, genetic influences leading to greater bone size might be 
inversely related to trabecular bone density at certain sites, due to reduced mechanical 
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strain as a consequence of a larger and hence stronger skeleton. However, despite these 
few discrepancies, overall there was a strong positive correlation between estimated effect 
size for the genome-wide significant heel eBMD SNPs in the present UK Biobank Study and 
estimated effect sizes for DXA-derived BMD at other skeletal sites in our previous GEFOS-
Seq study (femoral neck: Pearson’s r = 0.64 (0.57 – 0.71); lumbar spine: r = 0.69 (0.62 – 
0.75); forearm: r = 0.49 (0.39 – 0.58)) (Fig. 1)4. Adjusting for weight had little effect on the 
genome-wide significant results, save for partially attenuating the strength of association 
between eBMD and known adiposity variants (Supplementary Table 5). 
 
Since we employed a large sample size and genotyped and/or imputed low frequency 
variants (MAF <1%), we next assessed the allelic architecture of eBMD (Fig 2). We found a 
strong relationship between MAF and effect size, which in general followed the statistical 
power of our study design. The variants of largest effect (where each allele increased eBMD 
by 0.44 standard deviations [SD], P = 5 x 10-11) were in the gene IGHMBP2 (within 0.5Mb of 
known variants in LRP5) and the known EN1 and WNT16/CPED1 loci. We also detected 
several rare (MAF <1%) and low frequency variants (1% < MAF < 5%) in novel loci including 
rare variants near the genes BMP5 and BMPR2. Comparing the mean absolute effect sizes 
of genome-wide significant variants, we found a 6.5-fold difference in effects attributed to 
rare compared to common variants. 
 
Sex-specific analyses across the genome and tests of sex heterogeneity at genome-wide 
significant SNPs revealed a single variant rs17307280 at FAM9B on the X chromosome that 
was significantly associated with eBMD in men only (Supplementary Fig. 4, 
Supplementary Table 6) (heterogeneity P = 1.4 x 10-11), replicating previous results from 
Estrada et al.3 
 
Effects on Fracture 
We tested the relationship between eBMD-associated SNPs and fracture. We identified 
14,492 individuals (58% women) in UK Biobank reporting a previous fracture, irrespective of 
the trauma mechanism, since high-trauma fractures are predicted by low BMD and are 
predictive of future low-trauma fracture, suggesting a shared aetiology 24,25. In total, we 
observed that twelve eBMD SNPs were associated with fracture, after control for multiple 
testing (P ≤ 1.6 x 10-4). Sensitivity analyses, including only 8,540 individuals (69% women) 
reporting a fracture resulting from a simple fall (i.e. from standing height), were consistent 
with these findings (Table 1). Of these twelve loci, variants at AQP1 and SLC8A1 have not 
been associated with BMD or risk of fracture previously (although both SNPs show nominal 
association (P < 0.01) with DXA derived measures of BMD in the previous GEFOS-Seq 
study4 (Fig. 1, Supplementary Table 3)). Genome-wide significant eBMD variants showed 
an inverse relationship between their effect on eBMD and odds of fracture (Supplementary 
Fig. 5). 
 
Shared Genetic Factors 
We tested whether eBMD had a shared genetic aetiology with 247 other diseases and 
biomedically relevant traits using LD score regression26 as implemented in LDHub27. This 
method estimates the degree of shared genetic risk factors between two diseases or traits, 
although it says nothing about how this shared genetic aetiology arises (i.e. whether one 
variable causes the other or whether the relationship between eBMD and the other variable 
is mediated by an underlying variable like body mass index which is itself partially genetic). 
Fig. 3 shows that genetically increased eBMD was strongly and negatively correlated with 
fracture (rg = -0.47, 95% CI: -0.59, -0.35). Further, measures of BMD at other skeletal sites 
showed moderate positive genetic correlations with eBMD (Fig. 3) consistent with the 
concordant directions observed at the genome-wide significant loci (Fig. 1). 
 
We also tested to see whether eBMD was genetically correlated with a range of other 
complex traits and diseases (Supplementary Table 7; Fig. 3). We observed that eBMD was 
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weakly and negatively correlated with HDL, LDL, height, age at menarche and rheumatoid 
arthritis (Fig. 3). On the other hand, eBMD was weakly positively genetically correlated with 
body mass index (BMI), waist circumference, waist-hip ratio, coronary heart disease and 
type 2 diabetes. These findings support a shared genetic etiology of several common traits 
and diseases with eBMD, as has been shown previously between BMD, adiposity and type 2 
diabetes through Mendelian randomization28,29. 
 
Gene Prioritization 
Strategy One: Bioinformatic, Statistical and Functional Genomics in Humans 
We used several bioinformatics and statistical genetics tools to prioritize likely candidate 

genes and variants. These included the Variant Effect Predictor software30 to identify 

deleterious coding variation at genome-wide significant loci (Supplementary Table 8), the 

FINEMAP software to create configurations of plausible causal SNPs around each 

conditionally independent lead SNP (Supplementary Table 9), ENCODE maps of DNase I 

hypersensitivity sites (DHS) 31,32 and contextual analysis of transcription factor occupancy 

(CATO) scores4 to identify SNPs perturbing transcription factor activity, and cis-eQTL 

evidence in human osteoblasts 33 (Supplementary Table 10). These results are fully 

described in the Supplementary Note. 

Strategy Two: Data-Driven Expression-Prioritized Integration 
The second gene prioritization approach applied the DEPICT computational tool34. We 
identified 273 genes as most likely to be driving the eBMD association signals (false 
discovery rate (FDR) < 0.05). Among these 273 genes are several with an established role 
in bone metabolism including BMP2, LRP5, EN1, RUNX2, JAG1, ESR1, COL21A1 and 
SOST (Supplementary Table 11). 
 
We next tested the DEPICT prioritized genes for enriched expression in any of 209 Medical 
Subject Heading (MeSH) tissue and cell type annotations34. 62 tissue or cell type 
annotations were identified (at a FDR of 5%) among the entries defined from the medical 
subject heading tissue and cell annotations (Supplementary Table 12, Supplementary Fig. 
6). The strongest evidence of enriched expression of the genes mapping to eBMD loci came 
from chondrocytes and cartilage, although systems other than the musculoskeletal system 
were also overrepresented (i.e., cardiovascular system [7/12 significant entries], membranes 
tissue [6/7 significant entries] and connective tissue cells [5/7 significant entries]). 
 
The DEPICT prioritized genes were also tested for enriched gene sets, which identified more 
than 1,000 significantly enriched (FDR 5%) gene sets. After clustering in 35 ‘meta gene-
sets’, most clusters were related to skeletal growth (e.g. regulation of mineralized tissue 
development, vertebral fusion, abnormal craniofacial development, cartilage development) or 
to signalling pathways involved in bone biology (e.g. mesenchymal stem cell differentiation, 
BMP or WNT signalling). More global biological processes were also highlighted (e.g. 
transcription factor binding and regulation, chromatin remodelling complex or cell 
development) (Supplementary Fig. 7). 
 
Meta-analysis gene-set enrichment of variant associations (MAGENTA) software produced 
similar results implicating gene sets involved in bone mineralization and development, 
Cadherin, WNT and Hedgehog signalling pathways, as well as other pathways worthy of 
further investigation (oncogenic pathways, melanogenesis etc) (Supplementary Table 13). 
 
All genes prioritized by DEPICT were tested for expression in mouse osteoblasts, 
osteoclasts and osteocytes. Among the 273 genes prioritized, 241 had mouse homologs (the 
majority that did not have a known homologue were long non-coding RNAs), 92% were 
expressed in osteoblasts, 66% in osteoclasts, and 83% in osteocytes (Supplementary 
Table 14). Taken together, 95.4% of these genes were expressed in at least one of the three 
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cell types. This represents a substantial enrichment of genes expressed in osteoblast, 
osteocyte and osteoclasts (P < 0.0001 for each of osteoblasts, osteocytes and osteoclasts). 
 
We then investigated whether a skeletal phenotype had been reported in the International 
Mouse Phenotyping Consortium (IMPC: http://www.mousephenotype.org) or Mouse 
Genome Informatics (MGI: http://www.informatics.jax.org) databases in knockout mice 
harbouring a deletion of any of the prioritized genes. 189 (78%) of the 241 DEPICT-
prioritized genes had mouse knockout phenotype data available and 62 (33%) of these had 
skeletal abnormalities (Supplementary Table 14). 
 
Strategy Three: Deep Phenotyping of Murine Knockouts of Selected Genes within 1MB of 

Lead SNPs 

The third gene prioritization approach identified all genes within 1MB of lead SNPs at 
associated eBMD loci. These genes were compared with knockout mice generated at the 
Wellcome Trust Sanger Institute for the IMPC 35. Knockout mice had been generated for 120 
of the prioritized genes and bespoke skeletal phenotyping was undertaken as part of the 
Origins of Bone and Cartilage Disease (OBCD) Program 36. Specifically, we performed both 
structural and functional analysis of skeletal samples using digital x-ray microradiography, 
micro-CT and biomechanical testing. Results were compared with normal reference data 
from >250 controls with identical C57BL/6 genetic background. 43 (36%) of these 120 
prioritized genes had significantly abnormal bone structure, representing a 2-fold enrichment 
compared to previous analysis of 100 unselected knockout mice 36 (χ2= 8.359, P = 0.0038) 
(Supplementary Table 15). 
 
GPC6 Findings 
These parallel strategies identified 100 genes with an abnormal skeletal phenotype when 

disrupted in mutant mice (Supplementary Table 14, Supplementary Table 15). However, 

all three gene prioritization strategies identified GPC6 and, therefore this gene was selected 

for further study (Supplementary Table 16). 

GPC6 encodes a member of the glycosylphosphatidylinositol-anchored, membrane-bound 
heparan sulfate proteoglycan protein family. Loss of function mutations in GPC6 result in 
omodysplasia-1 (MIM 258315) a rare autosomal recessive skeletal dysplasia characterized 
by short limbed dwarfism with craniofacial dysmorphism, indicating a role for GPC6 in 
skeletal biology37, although the gene has not previously been implicated in osteoporosis. 
 
Our bioinformatics pipeline provided evidence for a functional association at the GPC6 locus. 
A single SNP in GPC6, rs1933784, in high linkage disequilibrium with the conditionally 
independent lead SNP rs147720516 at this locus (r2 > 0.9), is a plausible causal and 
functional variant. We observed that rs1933784 is a low frequency SNP (MAF = 0.05) 
significantly associated with eBMD (P = 2.3x10-10), with a high causal probability (log10 
Bayes factor = 2.4), and lies within DHS in several cell types (Supplementary Table 16). 
The rs1933784 variant also shows some evidence of association with expression of GPC6 in 
osteoblasts (P = 4.7x10-3) (Supplementary Table 16). 
 
GPC6 was identified by DEPICT as the most likely gene responsible for the association at 
this locus. Gpc6 is expressed in osteoblasts and osteocytes in mice (Supplementary Table 
14). Gpc6 had a similar level of enrichment (1.76 log fold-enrichment) in osteocytes when 
compared to genes known to play a key role in the skeleton, such as Lrp5 (1.95 log fold-
enrichment) (Supplementary Fig. 8), an important receptor that influences bone mass 
through canonical Wnt-signalling, and Runx2 (1.73 log fold-enrichment), a key transcription 
factor in osteoblast differentiation. 
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Adult female Gpc6-/- mice were analyzed and results compared to >250 wild type controls of 
identical C57BL/6 background. Consistent with the phenotype of omodysplasia-1, Gpc6-/-

mice, had femurs and vertebrae that were shorter than wild type (-1.95 and -2.17 SD, 
permuted P = 0.06, P = 0.016 respectively). Gpc6-/- mice also had increased femoral bone 
mineral content (+2.4 SD, permuted P = 3x10-4), and increased cortical thickness (+2.3 SD, 
permuted P = 5x10-3). The biomechanical consequence of these structural abnormalities 
was an increase in yield load (+2.1SD, permuted P = 8x10-3) which reflects an increased 
material elasticity (Fig. 4). While the phenotype of Gpc6-/- mice is consistent with human 
omodysplasia-1, no information is available regarding adult manifestations of the condition. 
Thus further studies in Gpc6-/- mice are required to characterize the cellular and molecular 
mechanisms underlying the role of GPC6 in the pathogenesis of osteoporosis. 
 
Finally, we queried 87 separate GWAS using the web-utility “PhenoScanner”, where full 
genome-wide summary statistics were available for the conditionally independent genome-
wide significant SNPs for eBMD (rs72635657, rs147720516) at the GPC6 locus, for any 
associations with a p-value <0.0538. We identified one association at a p-value <0.05, for 
rs72635657 with femoral neck BMD (P = 0.015). We also searched the NHGRI-EBI 
catalogue39 of published genome-wide association studies for the gene GPC6 (accessed 
22nd March 2017). SNPs in the region of GPC6 had previously shown evidence of 
association with Attention Deficit Hyperactivity Disorder, FEV1 following bronchodilation, 
alzheimer’s disease, neuroticism and lower facial height although the lead SNPs reported in 
these scans were not in appreciable linkage disequilibrium with the lead conditionally 
independent SNPs in the present study (all r2 < 0.1). 
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DISCUSSION 
 
In this study, we have increased the number of genetic loci associated with BMD in humans 
almost threefold and doubled the amount of variance explained for this trait. Further, we 
have demonstrated that several BMD associated variants also influence risk of fracture. We 
have prioritized genes for future study and provided functional evidence that GPC6 plays a 
role in BMD and the pathophysiology of osteoporosis. 
 
Our findings provide clear evidence that the genetic architecture of BMD is highly polygenic. 
The effect sizes observed follow a close relationship with MAF within the limits of the 
statistical power of the study. This suggests that further low-frequency and rare variants of 
moderate to large effect will be identified in future studies, which will likely be helpful to 
understand cellular and molecular mechanisms. Drug targets supported by evidence from 
human genetics are more likely to result in clinically useful therapies in general, and this has 
been demonstrated for musculoskeletal conditions 13,14. Thus, our findings will be helpful in 
identifying pathways and proteins amenable to pharmacologic manipulation to decrease the 
burden of fracture in the population. 
 
GPC6 encodes a glypican that may serve as a novel drug target for osteoporosis care since 
it is a cell-surface protein involved in signalling, whose loss of function leads to increased 
bone mineral content, likely due to increased cortical bone and a resultant increased 
elasticity. GPC6 is a member of the glypican family (GPC1-6) of 
glycosylphosphatidylinositol-anchored, membrane-bound heparan sulfate proteoglycan core 
proteins that are involved in cellular growth control and differentiation. Mutations of GPC3, 
GPC4 and GPC6 result in developmental skeletal abnormalities but limited or no information 
is available from affected adults (OMIM 312870, OMIM 258315). The heparan sulfate 
proteoglycans attached to the GPC6 core protein regulate skeletal signalling pathways 
involved in bone formation and mineralization, including those mediated by fibroblast growth 
factors, vascular endothelial growth factor, Hedgehog, and bone morphogenetic protein 
pathways 40. In addition, the adult high bone mass phenotype and increased cortical bone 
thickness identified in Gpc6-/- mice in these studies is consistent with the recently identified 
direct role for GPC6 in the modulation of Wnt signalling 41,42, which is the key regulator of 
osteoblastic bone formation and is associated with BMD in humans. Overall, these findings 
suggest a number of possible new pharmacological targets that include not only the core 
protein GPC6, but also the heparan sulphate synthetic (EXT1-2) and modification enzymes 
(NDST1-4, GLCE, HS2ST, and HS6ST1-3) that specifically regulate growth factor binding 
and activity. The availability of global and tissue-specific Gpc6-/- mice 35 now provides the 
opportunity to test these possibilities directly. However we caution that whilst GPC6 and 
associated proteins appear to be promising targets for pharmacotherapy, other factors will 
need to be considered before these molecules are confirmed to be suitable candidates for 
pharmacological manipulation (e.g. likelihood of unintended side effects etc). 
 
There are several limitations to our study. First, despite the high concordance between the 
loci identified using ultrasound derived measures of BMD and previous studies utilizing DXA 
derived BMD, there were some notable differences. Our study did not replicate associations 
at 18 known BMD loci from previous studies. Also, our list of genome-wide significant 
variants included some that were strongly related to eBMD at the heel, but have not been 
found in previous studies utilizing DXA derived BMD measures at other body sites in 
considerably smaller sample sizes. For some of these loci such as TBX1, this may simply be 
a consequence of the associated variants having neither been genotyped nor tagged well in 
previous studies. For other loci it may reflect genetic influences that are specific to the heel 
(e.g. genetic responses of the heel to ground reaction forces) that are not present at other 
body sites. Interestingly, we identified variants at six loci where the direction of effect was 
opposite between heel eBMD and DXA derived BMD at other sites, although notably at 
CPED1 the variants also showed association with risk of fracture in the direction consistent 
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with the heel eBMD association. Whilst the reason behind these differences is unclear, the 
implication is that ultrasound measures of the heel capture aspects of bone structure beyond 
those obtained by central DXA, and is consistent with previous observations that ultrasound 
measures of the heel predict risk of osteoporotic fracture over and above hip BMD43. 
 
Second, our study does not provide a definitive biological mechanism through which variants 
at genome-wide significant loci causally affect eBMD. Our eQTL analyses were not 
consistent with SNP effects being mediated through osteoblast expression at a majority of 
loci. This is likely because at least some of the identified eBMD-associated SNPs may act on 
cell types other than osteoblasts, such as osteocytes and osteoclasts. Further, the relatively 
small sample size of 95 individuals in the osteoblast eQTL experiment may have led to 
uncertain estimates. Last, the expression of genes in culture may reflect different biological 
processes than those in vivo. Whilst differences in gene expression are not the only 
mechanism through which the functional effects of an association can be mediated, we 
expect that large scale genetical genomics studies investigating the pattern of genetic 
association in osteoblasts, osteocytes and osteoclasts will facilitate answers to how these 
eBMD associations are mediated in the not too distant future. 
 
Third, our study had limited ability to detect very rare variants (i.e. MAF <0.1%) or rare 
variants of small effect (MAF <1% and effect size <0.05 SD). Finally, our study has only 
investigated the genetic aetiology of osteoporosis in European individuals. It is likely that the 
study of populations of different ancestry will reveal novel loci important in the regulation of 
BMD, as has been shown in the study of other conditions44. 
 
In summary, our findings shed light on the pathophysiologic mechanisms that underlie BMD 
and fracture risk in humans. Proteins identified and prioritized by these studies have 
identified signalling pathways that represent new drug targets for the prevention and 
treatment of osteoporosis- a major health care priority. 
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FIGURE LEGENDS 

Figure 1. Effect size in standard deviations for heel eBMD (y-axis) from the current UK 
Biobank Study plotted against effect size in standard deviations from the previous 
GEFOS-Seq paper for BMD at the (A) femoral neck, (B) lumbar spine, and (C) forearm 
(x-axis). Only conditionally independent variants that reach genome-wide significance (P < 
6.6 x10-9) for eBMD in the UK Biobank Study are plotted. Minus log10P-value for the (any) 
fracture analysis in UK Biobank is represented by the shading of the data points (black for 
robust evidence of association with fracture and white for poor evidence of association). 
SNPs that reach Bonferroni corrected significance for fracture (P < 1.6 x10-4) are labelled in 
the diagram. The blue dashed trend line shows a strong correlation between estimated effect 
sizes at the heel and at other sites of the body. SNPs at SLC8A1 and AQP1 were 
significantly related with fracture after correction for multiple testing (P < 1.6 x 10-4) and have 
not previously been reported associated with BMD or fracture although they both reached 
nominal significance (P < 0.05) in the previous GEFOS-Seq scan. 
 
Figure 2. Relationship between absolute conditional and joint analysis effect size in 
standard deviations (y-axis) and minor allele frequency (x-axis) for 307 conditionally 
independent SNPs. Red circles represent SNPs at previously reported BMD loci. Blue 
circles denote SNPs at novel loci. The black dashed line shows the effect size required for 
80% power to detect association at a given minor allele frequency at genome-wide 
significance (α = 6.6x10-9) in the present study. The orange dashed line shows the effect 
size required for 80% power to detect association at a given minor allele frequency at 
genome-wide significance (α = 6.6x10-9) assuming N = 483,230 individuals when the full 
UKBiobank Study becomes available. 
 
Figure 3. Genetic correlations between eBMD as measured in the UK Biobank Study 
(y-axis) and other traits and diseases (x-axis) estimated by LD score regression 
implemented in LDHub. Genetic correlation (rG) and corresponding 95% confidence 
intervals (error bars) between eBMD and traits were estimated using linkage-disequilibrium 
score regression. The genetic correlation estimates (rG) are shaded according to their 
magnitude and direction (red for positive and blue for negative correlation). 
 
Figure 4. Increased bone mass and strength in adult Glypican 6 knockout mice (Gpc6-
/-) (a) X-ray microradiography images of femur and caudal vertebrae from female wild-type 
(WT) and Gpc6-/- mice at postnatal day 112 (P112). Pseudocolored grey-scale images in 
which low bone mineral content (BMC) is green and high BMC is pink. Graphs show 
reference ranges derived from >250 WT mice of identical age, sex and genetic background 
(C57BL/6), mean (solid line), 1.0SD (dotted lines) and 2.0SD (grey box). Values for 
parameters from individual Gpc6-/- mice are shown as red dots and mean values as a black 
line (n=2 animals).  (b) Micro-CT images of proximal femur trabecular bone (left) and mid-
diaphysis cortical bone (right) from WT and Gpc6-/- mice. Graphs showing trabecular bone 
volume/tissue volume (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), 
trabecular spacing (Tb.Sp), cortical thickness (Ct.Th), internal cortical diameter and cortical 
bone mineral density (BMD). (c) Representative load displacement curves from destructive 
3-point bend testing of WT and Gpc6-/- femurs showing yield load, maximum load, fracture 
load and gradient of the linear elastic phase (stiffness). Graphs showing yield load, 
maximum load, fracture load, stiffness and energy dissipated prior to fracture (Toughness) 
(d) Representative load displacement curves from destructive compression testing of WT 
and Gpc6-/- caudal vertebra showing yield load, maximum load and stiffness. P values 
generated by permutation analysis as described in the methods. Scale bars: a,b, 1mm. 
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TABLES. 

Table 1 Genome-wide significant eBMD associated SNPs that show significant association with risk of fracture (P < 1.6 x 10-4) 

 
ANY FRACTURE FALL FRACTURE   

RSID CHR BP C.GENE EA NEA EAF OR CI95%-L CI95%-U P OR CI95%-L CI95%-U P STATUS 

rs10490046 2 40630678 SLC8A1 A C 0.78 0.94 0.92 0.97 6.8x10
-6

 0.94 0.91 0.98 1.4x10
-3

 NOVEL 

rs112069922 4 1034997 IDUA C T 0.95 0.89 0.84 0.93 4.8x10
-6

 0.90 0.84 0.96 2.2x10
-3

 KNOWN 

rs9491689 6 127398595 RSPO3 C A 0.72 1.05 1.03 1.08 5.0x10
-5

 1.05 1.02 1.09 2.0x10
-3

 KNOWN 

rs7741021 6 127468274 RSPO3 A C 0.52 1.07 1.04 1.09 1.5x10
-8

 1.07 1.04 1.10 4.8x10
-6

 KNOWN 

rs4869744 6 151908012 ESR1 T C 0.71 0.95 0.93 0.98 1.3x10
-4

 0.95 0.92 0.98 8.0x10
-4

 KNOWN 

rs2941741 6 152008982 ESR1 G A 0.58 1.05 1.03 1.08 6.5x10
-6

 1.07 1.04 1.11 2.4x10
-6

 KNOWN 

rs10276670 7 30956489 AQP1 A G 0.77 0.95 0.92 0.97 4.1x10
-5

 0.94 0.91 0.97 3.5x10
-4

 NOVEL 

rs2536195 7 120959155 WNT16 A G 0.6  1.10 1.07 1.12 2.6x10
-15

 1.13 1.10 1.16 1.6x10
-15

 KNOWN 

rs10668066 7 120965464 WNT16 G GCACC 0.75 1.09 1.07 1.12 1.5x10
-11

 1.13 1.09 1.17 2.5x10
-12

 KNOWN 

rs7099953 10 54426489 MBL2 G T 0.89 0.90 0.87 0.93 4.9x10
-9

 0.89 0.84 0.93 5.0x10
-7

 KNOWN 

rs7209826 17 41796406 SOST A G 0.62 1.05 1.03 1.07 3.6x10
-5

 1.06 1.03 1.10 7.1x10
-5

 KNOWN 

rs188810925 17 41798194 SOST G A 0.92 1.09 1.04 1.14 9.2x10
-5

 1.11 1.05 1.17 3.3x10
-4

 KNOWN 

 

*Beta (β) and standard errors (SE) from BOLT-LMM were transformed using the following formula: (β or SE) / (µ *(1- µ)), where µ = number of cases/number of controls. 

Approximate odds ratios (OR) and 95% confidence intervals (CI95%) were calculated from the transformed beta and standard error. RSID = Reference SNP cluster ID, CHR = 

Chromosome, BP = Base pair position of the variant according to human reference sequence (Hg19/GRCh37), C.GENE = closest gene, EA = Effect allele, NEA = Non-effect 

allele, EAF = Effect allele frequency, and P = Strength of evidence against the null hypothesis of no association between variant and self-reported fracture (i.e. P-value), ANY 

FRACTURE = any self-reported fracture within the last five years (N = 14,492 cases / 130,563 controls) and FALL FRACTURE = self-reported fracture within the last five years 

that occurred as the result of a simple fall (N = 8,540 cases / 131,333 controls).  
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ONLINE METHODS 
 
Measurement of eBMD, fracture and weight in UKBB 
In 2006-2010, the UK Biobank recruited 502,647 individuals aged between 37-76 years 
(99.5% were 40-69 years) from across the country. Each participant provided information 
regarding their health and lifestyle using touch screen questionnaires, physical 
measurements and agreement to have their health followed and they also provided blood, 
urine and saliva samples for future analysis. UK Biobank has ethical approval from the 
Northwest Multi-centre Research Ethics Committee (MREC) and informed consent was 
obtained from all participants. Quantitative ultrasound assessment of calcanei was 
performed in UK Biobank participants using a Sahara Clinical Bone Sonometer [Hologic 
Corporation (Bedford, Massachusetts, USA)]. Details of the complete protocol employed are 
publicly available on the UK Biobank website 
(https://biobank.ctsu.ox.ac.uk/crystal/docs/Ultrasoundbonedensitometry.pdf). Participants 
were initially measured at baseline (N = 487,428) and had either their left calcaneus (N = 
317,815), right calcaneus (N = 4,102) or both calcanei measured (N = 165,511). A subset of 
these subjects were followed up at two further time points (N = 20,104) and (N = 7,988), 
during which both heels were measured. A detailed description of the ascertainment 
procedure is described in the Supplementary Fig 2. Prior to quality control, ultrasound data 
were available for 488,683 individuals at either baseline and/or follow-up assessment. 
Estimated bone mineral density [eBMD, (g/cm2)] was derived as a linear combination of 
speed of sound (SOS) and bone ultrasound attenuation (BUA) (i.e. eBMD = 0.002592 * 
(BUA + SOS) − 3.687). To reduce the impact of outlying measurements, quality control was 
applied to male and female subjects separately using the following exclusion thresholds: 
Speed of sound [SOS; Male: (≤ 1,450 and ≥ 1,700 m/s), Female (≤ 1,455 and ≥ 1,700 m/s)] 
and broadband ultrasound attenuation [BUA; male: (≤ 27 and ≥ 138 dB/MHz), female (≤ 22 
and ≥ 138 dB/MHz)]. Individuals exceeding the following thresholds for eBMD were 
excluded: [Male: (≤ 0.18 and ≥ 1.06 g/cm2), Female (≤ 0.12 and ≥ 1.025 g/cm2)]. Bivariate 
scatter plots of eBMD, BUA and SOS were visually inspected and any measurements not 
clustering with the others were removed, leaving a total of 483,230 valid measures (476,618 
left and 6,612 right calcaneus) for SOS, BUA and BMD (265,057 females and 218,173 
males). Please see Supplementary Fig. 2 for a detailed description of the QC pipeline and 
Supplementary Table 1 for an overview of descriptive statistics of the cohort after quality 
control. 
 
We defined 14,492 individuals (8,439 female and 6,053 male) as having a fracture, based on 
answering yes to the question “Have you fractured/broken any bones in the last 5 years?” at 
either baseline or first follow-up. Individuals were coded as missing if they responded “Do 
not know” or “Prefer not to answer” at both the baseline and first follow-up, otherwise they 
were coded as controls (N=130,563). Self-reported fractures have low false positive and 
false negative rates.45 Individuals who responded yes to having a fracture were also asked 
“Did the fracture result from a simple fall (i.e. from standing height)?” We created a second 
variable using this question, where 8,540 individuals (5,853 female and 2,687 male) had a 
fracture from a simple fall and 131,333 individuals did not report a fracture. Weight was 
measured using the Tanita BC418MA body composition analyser. 
 
Preparation, quality control and genetic analysis in UK Biobank samples 
Genotype data from the interim May 2015 release of UK Biobank were available for a subset 
of 152,729 participants. Data was imputed centrally by UK Biobank using IMPUTE2 46 to a 
1000G (Oct 2014) and UK10K reference panel. In addition to the quality control metrics 
performed centrally by UK Biobank (UK Biobank document #155580 
http://biobank.ctsu.ox.ac.uk/crystal/docs/genotyping_qc.pdf), we defined a subset of “white 
European” ancestry samples using a K-means (K=4) clustering approach based on the first 
4 genetically determined principal components. A maximum of 142,487 individuals (76,067 
females and 66,420 males) with genotype and valid QUS measures were available for the 
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present analyses. We tested genetic variants for association with eBMD assuming an 
additive allelic effect, in a linear mixed non-infinitesimal model implemented in BOLT-LMM 47 
to account for cryptic population structure and relatedness. Genotyping array, age and sex 
were included as covariates in all models. We also included weight as a covariate in a 
sensitivity analysis to investigate whether power to detect association was increased or if 
weight mediated the relationship between genotype and eBMD (i.e. some variants may be 
primarily associated with weight and their effect on eBMD mediated through a causal effect 
of weight on eBMD 29). Only SNPs down to a minor allele frequency of 0.1% and with an 
info-score threshold of > 0.4 were analysed. We additionally analysed the association 
between eBMD and directly genotyped SNPs on the X chromosome, adjusting for 
genotyping array, age, sex and the first 4 ancestry principal components, using Plink v1.09 
beta 3.38 (7 Jun 2016) software48 and a nested sample of unrelated subjects (N= 135,729). 
As the analyses for the X chromosome data were based upon observed genotypes, our 
quality control was slightly different. We excluded SNPs with evidence of deviation from 
Hardy-Weinberg Equilibrium (1×10-6), minor allele frequency < 0.1% and overall missing rate 
> 5%, resulting in 15,552 X chromosome SNPs for analysis. Heterogeneity between sexes in 
effect size coefficients was tested using EasyStrata 49. Manhattan and Miami plots of our 
genome-wide association scans were generated by EasyStrata version 15.3. Regional 
association plots were generated using LocusZoom (v1.3) 50, using linkage-disequilibrium 
information estimated from our reference UKBiobank sample, together with the December 
2016 release of the NHGRI-EBI Catalog of published genome-wide association studies. 
SNPs that were associated with eBMD at genome-wide significant levels were additionally 
tested for association with fracture using BOLT-LMM including age, sex, BMI and the time of 
reporting the fracture as fixed effects 47. 
 
Estimation of genome-wide significance threshold 
Traditional estimates of the genome-wide significance threshold for common variants (MAF 
>5%) in European populations (i.e. α = 5 x 10-8) are based on a Bonferroni correction of α = 
0.05/106, since there are an estimated 1 million statistically independent SNPs above this 
MAF threshold. However, in the case of UK Biobank, we have assessed SNPs down to a 
minor allele frequency of 0.1% in 142,487 individuals and applied an info-score threshold of 
> 0.4, resulting in 17.17M SNPs. Therefore, we defined a new and more conservative 
threshold to declare genome-wide significance accounting for the number of independent 
statistical tests performed in our data. To do so, we applied the method we previously used 
within the UK10K sequencing consortium 4 which assesses the correlation between nearby 
test statistics empirically. Analysis of permuted data derived from a small proportion of all 
tested variants allows assessment of the correlation patterns. Hence, we can estimate, in 
subsets of the genome of varying size, the relationship between the Bonferroni significance 
threshold and the empirical significance threshold that corrects for correlations, and thereby 
extrapolate to the whole genome. Specifically, when assessing all 740,018 variants that met 
our filtering criteria across chromosome nine (Supplementary Fig. 9), we saw a good linear 
fit between family wise error rate (α = 0.05), divided by the number of tests and the empirical 
significance thresholds. Our estimated genome-wide significance threshold then, accounting 
for all SNPs MAF ≥ 0.1% and info-score > 0.4 was α = 6.6 x 10-9. 
 
Approximate conditional association analysis 
In order to detect multiple independent association signals at each of the genome-wide 
significant eBMD loci, we applied approximate conditional and joint genome-wide 
association analysis using the software package GCTA 51. SNPs with high collinearity 
(multiple regression R2 > 0.9) were ignored and those situated more than 20 MB away were 
assumed to be in complete linkage equilibrium. A reference sample of 15,000 unrelated 
(pairwise relatedness < 0.025) individuals of white British origin, randomly selected from UK 
Biobank was used to model patterns of linkage disequilibrium (LD) between variants. The 
reference genotyping dataset consisted of the same 17M variants assessed in our GWAS, 
but with an additional QC step excluding SNPs that deviated from Hardy-Weinberg 
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Equilibrium (1×10-6). Conditionally independent variants reaching GWAS significance were 
annotated to the physically closest gene using bedtools52 v2.26.0 and the Hg19 Gene range 
list available from https://www.cog-genomics.org/plink2/. 
 
Estimation of variance explained by significant variants and SNP heritability 
We estimated the proportion of phenotypic variance tagged by all SNPs on the genotyping 
array (i.e. the SNP heritability) using BOLT-REML53. In order to calculate the variance 
explained by all genome-wide significant SNPs we first employed the method of Bigdeli et al. 
(2016) to shrink the effect sizes of SNPs likely to suffer from “winner’s curse”54. Briefly the 
method works by shrinking the effect sizes of SNPs that just pass significance whilst having 
a negligible effect on SNPs that are more strongly significant (and consequently more 
accurately and precisely estimated). After calculating the corrected effect sizes we then 
removed the combined effect of the SNPs on individual’s eBMD and recalculated the total 
expected variance in BOLT-LMM. The difference between this estimate and the total 
expected variance calculated on the original data without the SNP correction is an estimate 
of the variance explained by all SNPs. 
 
LD Score regression 
To estimate the amount of genomic inflation present in the data that was due to residual 
population stratification, cryptic relatedness, and other latent sources of bias, we used LD 
score regression15. LD scores were calculated for all high quality SNPs (i.e. INFO score > 
0.9 and MAF > 0.1%) from a dataset consisting of 15,000 unrelated individuals from the UK 
Biobank. To estimate the genetic correlation between eBMD and other complex traits and 
diseases including those related to osteoporosis, we used a relatively new method based on 
LD Score regression as implemented in the online web utility LDHub 26,27. This method uses 
the cross products of summary test statistics from two GWAS and regresses them against a 
measure of how much variation each SNP tags (its “LD Score”). Variants with high LD 
Scores are more likely to contain more true signals and hence provide more chance of 
overlap with genuine signals between GWAS. The LD score regression method uses 
summary statistics from the GWAS meta-analysis of eBMD and the other traits of interest, 
calculates the cross-product of test statistics at each SNP, and then regresses the cross-
product on the LD Score. The slope of the regression is a function of the genetic covariance 
between traits: 
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where Ni is the sample size for study i, ρg is the genetic covariance, M is the number of 
SNPs in the reference panel with MAF between 5% and 50%, lj is the LD score for SNP j, Ns 
quantifies the number of individuals that overlap both studies, and ρ is the phenotypic 
correlation amongst the Ns overlapping samples. Thus, if there is sample overlap (or cryptic 
relatedness between samples), it will only affect the intercept from the regression (i.e. the 

term 
���

	����
) and not the slope, and hence estimates of the genetic covariance will not be 

biased by sample overlap. Likewise, population stratification will affect the intercept but will 
have minimal impact on the slope (i.e. intuitively since population stratification does not 
correlate with linkage disequilibrium between nearby markers). 
 
Gene prioritization and pathway analysis 
To establish functional connections we conducted three different analyses implemented in 
the DEPICT v1 tool34. First, to prioritize genes with relevant biological roles in the eBMD 
associated loci functional similarities among genes from different associated regions were 
tested, where genes with high functional similarity across regions obtained lower 
prioritization P values. Second, we analysed expression enrichment across particular tissues 
or cell types, by testing whether genes in the associated eBMD loci were seen highly 
expressed in any of the 209 Medical Subject Heading (MeSH) annotations using data from 
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37,427 expression arrays. Third, we performed a gene set enrichment analysis, which tests 
if the genes in the associated eBMD loci are enriched in reconstituted gene-sets. The 10,968 
gene-sets tested have been generated from diverse databases, i.e. Gene Ontology, Kyoto 
encyclopedia of genes and genomes, REACTOME, InWeb database (high confidence 
protein-protein interaction), and the Mouse Genetics Initiative (phenotype-genotype 
relationships). All three analyses used False Discovery Rate (FDR) to adjust for multiple 
testing, significance was defined at FDR 5%. 
 
The DEPICT analyses were based on independent lead SNPs (r2<0.1, European 
populations 1000 genomes reference panel) with P-values below the genome-wide 
significant threshold (P < 6.64x10-9). As many of the Gene-sets tested come from different 
repositories, they overlap, hence significantly enriched gene-sets were further grouped into 
‘meta gene sets’ by similarity clustering, as previously described34. The visualization of these 
‘meta gene-sets’ was performed in cytoscape 55, filtering for ‘meta gene sets’ at FDR <1%.  
 
We also compared the DEPICT gene set enrichment results to analyses using the Meta-
analysis gene-set enrichment of variant associations (MAGENTA) software56. Briefly, 
MAGENTA maps each gene in the genome to a single index SNP with the lowest p value 
within a 110 kb upstream and 40 kb downstream window (excluding genes in the HLA region 
due to complex patterns of linkage disequilibrium). This P value is then corrected for 
confounding factors (e.g. SNP density, gene size etc.) in a linear regression model and each 
gene is ranked by its adjusted gene score. The observed number of gene scores in a given 
pathway, with a ranked score above a specified threshold (i.e. 95th and 75th percentiles of 
all gene scores) is then calculated. This observed statistic is then compared to 1,000,000 
randomly permuted pathways of identical size. This generates an empirical GSEA P value 
for each gene set. A gene set was declared significant when an individual pathway reached 
a FDR < 0.05 in either analysis. We tested 3217 pre-specified gene sets from Gene 
Ontology, Ingenuity, Kyoto Encyclopedia of Genes and Genomes (KEGG), Protein Analysis 
Through Evolutionary Relationships (PANTHER), BioCarta and Reactome databases. 
 
Prioritising candidate genes and possible causal variants at each eBMD locus 
We combined a number of approaches to identify possible causal SNPs at each eBMD 
signal (defined here as all SNPs within 500 kb of conditionally independent lead SNP that 
met genome-wide significance). First, we annotated all SNPs within a locus (defined as +/- 
500 kb from a conditionally independent lead SNP) for deleterious coding variation 
annotation using the Variant Effect Predictor (VEP)30 if they were significantly associated 
with eBMD (P < 6.6x10-9). Deleterious SNPs were classified as such if they had one of the 
following sequence ontology terms: frameshift_variant, inframe_deletion, inframe_insertion, 
initator_codon_variant, missense_variant, splice_acceptor_variant, splice_donor_variant, 
stop_gained, or stop_lost. 
 
Next, we identified 305 autosomal lead SNPs and further defined sets of plausible causal 
SNPs within each locus using FINEMAP57. For each locus, FINEMAP implements a shotgun 
stochastic search algorithm to test multiple causal configurations of SNPs, calculating within 
a Bayesian framework the posterior probabilities of each configuration to identify the number 
of likely causal SNPs. We note that this approach assumes that the true causal variant(s) 
have been included in the analysis and have been well imputed. We also emphasize that 
approaches such as this that are based solely on association test statistics and linkage 
disequilibrium are unlikely to be definitive with respect to the identification of causal 
variants/genes. Thus, we regard these fine mapping analyses as one of several approaches 
that can be used to implicate specific variants/genes in osteoporosis aetiology. When the 
same variant/gene is implicated using multiple independent approaches (e.g. mouse 
knockout, human knockout, gene expression and eQTL studies etc.) then we can be 
increasingly confident of the identity of the gene/variant(s) underlying the statistical 
association. 
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For a given number of plausible causal SNPs, FINEMAP will calculate for each SNP their 
Bayes factor which quantifies the evidence that the particular SNP is causal. We retained 
only SNPs with Bayes factors greater than 100, or log10 Bayes factors greater than 2, as our 
plausible causal SNPs for each locus. 
 
Each set of plausible causal SNPs was then annotated for overlap with DNase I 
hypersensitive sites (DHS) using a master list derived from 115 cell types4. DHS are focal 
sites of open chromatin comprising the collective transcription factor (TF) binding sites in a 
given cell type. We further annotated each SNP inhabiting a DHS using Contextual Analysis 
of Transcription Factor Occupancy (CATO) scores. CATO, previously described by Maurano 
et al. 4, scores the likelihood of a variant causing allelic imbalance of a DHS by modelling 
both local sequence context and direct effects on the TF recognition sequences for 44 TF 
motif families. CATO scores range between 0 and 1 and we considered SNPs with CATO 
scores greater than 0.1 as having very strong functional evidence (corresponding to a 51% 
positive predictive rate in the initial training set 4). 
 
Genetically modified animals used for functional validation: The International Mouse 

Phenotyping Consortium (IMPC) 58 together with the International Knockout Mouse 

Consortium (IKMC) are generating null alleles for all protein coding genes on a C57BL/6 

genetic background 59. These mice are phenotyped through a broad-based phenotyping 

screen 60. This approach can be used for functional investigation of candidate genes 

identified by GWAS analysis of human disease traits, and studies have already ascribed 

novel functions for poorly annotated or previously unpublished genes. The Origins of Bone 

and Cartilage Disease (OBCD) study (http://www.boneandcartilage.com) is undertaking a 

validated multi-parameter skeletal phenotype screen 36 of mutant mouse lines generated by 

Wellcome Trust Sanger Institute as part of the IKMC and IMPC effort. 

OBCD methods: Samples from 16 week-old female wild-type and knockout mice are stored 
in 70% ethanol, anonymised and randomly assigned to batches for rapid throughput analysis 
in an unselected fashion. The relative bone mineral content and length of the femur and 
caudal vertebrae are determined at 10µm pixel resolution by digital X-ray microradiography 
(Faxitron MX20) . Micro-CT (Scanco uCT50, 70kV, 200µA, 0.5mm aluminium filter) is used 
to determine cortical bone parameters (thickness Ct.Th, BMD, medullary diameter) at 10µm 
voxel resolution in a 1.5mm region centred in the mid-shaft region 56% along the length of 
the femur distal to the femoral head, and trabecular parameters (bone volume BV/TV, 
trabecular number Tb.N, thickness Tb.Th, spacing Tb.Sp) at 5µm voxel resolution in a 1mm 
region beginning 100µm proximal to the distal growth plate. Biomechanical variables of bone 
strength and toughness (yield load, maximum load, fracture load, % energy dissipated prior 
to fracture) are derived from destructive 3-point bend testing of the femur and compression 
testing of caudal vertebra 6 and 7 (Instron 5543 load frame, 100N load cell) 36. Overall, 19 
skeletal parameters are reported for each individual mouse studied and compared to 
reference data obtained from >250 16 week-old wild-type C57BL/6 female mice. Coefficients 
of Variation (CV) for each skeletal parameter were as follows: 
femur BMC (2.0%) and length (2.1%); vertebra BMC (2.1%) and length (2.3%); trabecular 
bone BV/TV (18.5%), Tb.N (7.3%), Tb.Th (7.9%) and Tb.Sp (8.3%); cortical bone Ct.Th 
(4.3%), Int.Diam (6.0%) and BMD (4.0%); femur yield load (13.2%), maximum load (10.0%), 
fracture load (29.0%), stiffness (13.7%) and energy dissipated prior to fracture (26.7%); and 
vertebra yield load (13.0%), maximum load (10.3%) and stiffness (13.3%). 
 
In Supplementary Table 15, we have highlighted knockout mice with phenotypes greater 
than 2 SDs away from the mean of wild type mice. We generated P-values for the reported 
Gpc6-/- mouse phenotypes through permutation. To do so we first identified the least extreme 
phenotype for the Gpc6-/- mice tested. We then permuted the knockout labels 100,000 times 
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to observe the number of times we observed two knockout animals with both phenotypes as 
extreme as the least extreme Gpc6-/- mouse phenotype. The P-value was then calculated as 
the number of extreme permutations divided by 100,000. All mouse studies were undertaken 
by Wellcome Trust Sanger Institute Mouse Genetics Project as part of the International 
Knockout Mouse Consortium and licensed by the UK Home Office in accordance with the 
Animals (Scientific Procedures) Act 1986 and the recommendations of the Weatherall report. 
 
Gene expression in primary human and murine osteoblasts: To study human 
osteoblasts, we undertook cis-eQTL analyses of plausible causal regulatory SNPs in 95 
primary human osteoblasts as previously described by Grundberg et al33, performed with an 
updated imputation panel, the combined UK10K and 1000 Genomes Phase 1 v3 reference 
panel61. We used an alpha level of α=0.05 to identify possible gene targets of plausible 
causal SNPs.  
 
We investigated the possibility that heel eBMD associations and cis-eQTL effects in 
osteoblasts may represent different signals (i.e. as opposed to a causal effect of osteoblast 
expression on eBMD) by performing two sample summary Mendelian randomization 
analysis on osteoblast eQTL and heel eBMD GWAS results62,63. A HEIDI (heterogeneity in 
dependent instruments) test was used to identify situations in which the lead cis-eQTL was 
likely to be in linkage disequilibrium with two distinct causal variants (i.e. one affecting gene 
expression and the other affecting eBMD variation), as opposed to expression of the 
relevant gene mediating the relationship between the SNP and eBMD. Intuitively the test 
works by comparing estimates of the putative causal effect of gene expression on eBMD 
obtained by Mendelian randomization analysis of each variant whilst taking into account 
dependencies between the SNPs. Under a causal model, different SNPs should produce the 
same causal estimate (subject to sampling error), whereas under a model of linkage (i.e. two 
separate signals in the region, one affecting gene expression in osteoblasts and the other 
affecting eBMD), the estimates from the Mendelian randomization analysis may significantly 
differ. In the context of our study, a significant HEIDI test suggests that expression of the 
relevant gene in osteoblasts does not mediate the SNP – eBMD association. We therefore 
performed HEIDI tests for all the probes listed in Supplementary Table 10 that were 
implicated in our gene expression analyses. In order to avoid weak SNP instruments 
potentially affecting our results we only included SNPs in the eQTL analysis that exhibited 
strong evidence of association (i.e. F statistic > 10)63. 
 
Gene expression profiles of candidate genes were examined in primary mouse osteoblasts 
undergoing differentiation. These data have been described in detail previously 64 and are 
publicly available from the Gene Expression Omnibus (GSE54461). To study murine 
osteoblasts, pre-osteoblast-like cells were obtained from neonatal calvaria collected from 
C57BL/6J carrying a transgene expressing Cyan Florescent Protein (CFP) under the control 
of the Col 3.6Kb promoter. The cells were placed into culture for 4 days in growth media, 
removed from culture and cells not expressing CFP were removed by FACS sorting. The 
remaining pre-osteoblast cells were re-plated, were subjected to an osteoblast differentiation 
cocktail and RNA was collected every two days from day 2 to 18 days post differentiation. 
Next Generation RNA sequencing (RNAseq) was used to evaluate the transcriptome at each 
time point using an Illumina HiSeq 2000. Three technical replicates per samples were 
sequenced. The alignments for abundance estimation of transcripts was conducted using 
Bowtie version 0.12.9, using the NCBIm37 reference genome. Expression level per gene 
was calculated using RSEM version 1.2.0 with the parameters of --fragment-length-mean 
280 and --fragment-length-sd 50, and the expression level for each sample was normalized 
relative to the per sample upper quartile. 
 
Gene expression in murine osteocytes: Osteocyte expression was determined through an 
analysis of whole transcriptome sequencing derived from four different bone types from 
throughout the mouse skeleton – the tibia, femur, humerus and calvaria (marrow removed, 
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n=8 per bone). A threshold of expression was determined based on the distribution of 
normalised gene expression for each sample modifying a statistical approach by Hart et al. 
(2013) 65. “Expressed” genes were above this threshold for 8 of 8 replicates in any bone 
type. The specificity of these genes expression in the skeleton was determined by 
comparing transcriptome-sequencing data from bone-samples with osteocytes isolated to 
those with the marrow left intact (n=5 per group) (S.E.Y, J.H.D.B, G.R.W, P.I.C manuscript in 
preparation). 
 
Gene expression in mouse osteoclasts: Expression of genes in murine osteoclasts was 
determined using publically available data obtained using Next-Gen RNA-sequencing 
applied to bone marrow derived osteoclasts obtained from 6-8 week old C57BL/6 mice (GEO 
Accession Number: GSM1873361). 
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DATA AVAILABILITY AND ACCESSION CODE AVAILABILITY STATEMENTS: 
 
The human genotype and phenotype data on which the results of this study are based are 
available upon application from the UK Biobank Study (http://www.ukbiobank.ac.uk/). GWAS 
summary statistics from this study available via the GEnetic Factors for OSteoporosis 
Consortium website (http://www.gefos.org/). No new datasets or related accession codes 
were generated as part of this study. Mouse phenotype data are available online at the 
IMPC (http://www.mousephenotype.org) and OBCD (http://www.boneandcartilage.com). 
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