13 research outputs found

    Random Mutagenesis of Presenilin-1 Identifies Novel Mutants Exclusively Generating Long Amyloid β-Peptides

    Get PDF
    Familial Alzheimer disease-causing mutations in the presenilins increase production of longer pathogenic amyloid beta-peptides (A beta(42/43)) by altering gamma-secretase activity. The mechanism underlying this effect remains unknown, although it has been proposed that heteromeric macromolecular complexes containing presenilins mediate gamma-secretase cleavage of the amyloid beta-precursor protein. Using a random mutagenesis screen of presenilin-1 (PS1) for PS1 endoproteolysis-impairing mutations, we identified five unique mutants, including R278I-PS1 and L435H-PS1, that exclusively generated a high level of A beta43, but did not support physiological PS1 endoproteolysis or A beta40 generation. These mutants did not measurably alter the molecular size or subcellular localization of PS1 complexes. Pharmacological studies indicated that the up-regulation of activity for A beta43 generation by these mutations was not further enhanced by the difluoroketone inhibitor DFK167 and was refractory to inhibition by sulindac sulfide. These results suggest that PS1 mutations can lead to a wide spectrum of changes in the activity and specificity of gamma-secretase and that the effects of PS1 mutations and gamma-secretase inhibitors on the specificity are mediated through a common mechanism.status: publishe

    New amyloid plaques or a game of hide-and-seek?

    No full text

    Suppression of amyloid-β secretion from neurons by cis-9, trans-11-octadecadienoic acid, an isomer of conjugated linoleic acid

    Get PDF
    Two common conjugated linoleic acids (LAs), cis-9, trans-11 CLA (c9,t11 CLA) and trans-10, cis-12 CLA (t10,c12 CLA), exert various biological activities. However, the effect of CLA on the generation of neurotoxic amyloid-beta (A beta) protein remains unclear. We found that c9,t11 CLA significantly suppressed the generation of A beta in mouse neurons. CLA treatment did not affect the level of beta-site APP-cleaving enzyme 1 (BACE1), a component of active gamma-secretase complex presenilin 1 amino-terminal fragment, or A beta protein precursor (APP) in cultured neurons. BACE1 and gamma-secretase activities were not directly affected by c9,t11 CLA. Localization of BACE1 and APP in early endosomes increased in neurons treated with c9,t11 CLA; concomitantly, the localization of both proteins was reduced in late endosomes, the predominant site of APP cleavage by BACE1. The level of CLA-containing phosphatidylcholine (CLA-PC) increased dramatically in neurons incubated with CLA. Incorporation of phospholipids containing c9,t11 CLA, but not t10,c12 CLA, into the membrane may affect the localization of some membrane-associated proteins in intracellular membrane compartments. Thus, in neurons treated with c9,t11 CLA, reduced colocalization of APP with BACE1 in late endosomes may decrease APP cleavage by BACE1 and subsequent A beta generation. Our findings suggest that the accumulation of c9,t11 CLA-PC/LPC in neuronal membranes suppresses the production of neurotoxic A beta in neurons
    corecore