11 research outputs found

    Substitution of the myristoylation signal of human immunodeficiency virus type 1 Pr55Gag with the phospholipase C-δ1 pleckstrin homology domain results in infectious pseudovirion production

    Get PDF
    The matrix domain (MA) of human immunodeficiency virus type 1 Pr55Gag is covalently modified with a myristoyl group that mediates efficient viral production. However, the role of myristoylation, particularly in the viral entry process, remains uninvestigated. This study replaced the myristoylation signal of MA with a well-studied phosphatidylinositol 4,5-biphosphate-binding plasma membrane (PM) targeting motif, the phospholipase C-δ1 pleckstrin homology (PH) domain. PH–Gag–Pol PM targeting and viral production efficiencies were improved compared with Gag–Pol, consistent with the estimated increases in Gag–PM affinity. Both virions were recovered in similar sucrose density-gradient fractions and had similar mature virion morphologies. Importantly, PH–Gag–Pol and Gag–Pol pseudovirions had almost identical infectivity, suggesting a dispensable role for myristoylation in the virus life cycle. PH–Gag–Pol might be useful in separating the myristoylation-dependent processes from the myristoylation-independent processes. This the first report demonstrating infectious pseudovirion production without myristoylated Pr55Gag

    Random Mutagenesis of Presenilin-1 Identifies Novel Mutants Exclusively Generating Long Amyloid β-Peptides

    Get PDF
    Familial Alzheimer disease-causing mutations in the presenilins increase production of longer pathogenic amyloid beta-peptides (A beta(42/43)) by altering gamma-secretase activity. The mechanism underlying this effect remains unknown, although it has been proposed that heteromeric macromolecular complexes containing presenilins mediate gamma-secretase cleavage of the amyloid beta-precursor protein. Using a random mutagenesis screen of presenilin-1 (PS1) for PS1 endoproteolysis-impairing mutations, we identified five unique mutants, including R278I-PS1 and L435H-PS1, that exclusively generated a high level of A beta43, but did not support physiological PS1 endoproteolysis or A beta40 generation. These mutants did not measurably alter the molecular size or subcellular localization of PS1 complexes. Pharmacological studies indicated that the up-regulation of activity for A beta43 generation by these mutations was not further enhanced by the difluoroketone inhibitor DFK167 and was refractory to inhibition by sulindac sulfide. These results suggest that PS1 mutations can lead to a wide spectrum of changes in the activity and specificity of gamma-secretase and that the effects of PS1 mutations and gamma-secretase inhibitors on the specificity are mediated through a common mechanism.status: publishe

    Structural and Functional Analyses of the Genes for Growth Hormone (GH) and Insulin-like Growth Factor-I (IGF-I), and the Functions of GH and IGF-I

    Get PDF
    An essential element in the developmental and functional integrity of all organisms is intracellular communication. This is achieved by the secretion of soluble messenger molecules, or signal substances, which interact with a corresponding receptor molecule on the target cell surface. Hormones, such as growth hormone(GH), are defined as the messengers synthesized by endocrine glands. Growth factors such as insulin-like growth factor-I(IGF-I)are hormone-related substances produced by many tissues and play an important role in controlling growth and development. Although the physiological roles of growth factors have yet to be completely elucidated, they play important roles in the regulation of cellular proliferation and/or differentiation. Recently, there have been substantial developments in research related to peptide hormones, growth factors, and their receptors. With the discovery and characterization of numerous growth factors, it is evident that growth factors have multiple features in common with classic hormones
    corecore