48 research outputs found

    Stochastic Ion Channel Gating in Dendritic Neurons: Morphology Dependence and Probabilistic Synaptic Activation of Dendritic Spikes

    Get PDF
    Neuronal activity is mediated through changes in the probability of stochastic transitions between open and closed states of ion channels. While differences in morphology define neuronal cell types and may underlie neurological disorders, very little is known about influences of stochastic ion channel gating in neurons with complex morphology. We introduce and validate new computational tools that enable efficient generation and simulation of models containing stochastic ion channels distributed across dendritic and axonal membranes. Comparison of five morphologically distinct neuronal cell types reveals that when all simulated neurons contain identical densities of stochastic ion channels, the amplitude of stochastic membrane potential fluctuations differs between cell types and depends on sub-cellular location. For typical neurons, the amplitude of membrane potential fluctuations depends on channel kinetics as well as open probability. Using a detailed model of a hippocampal CA1 pyramidal neuron, we show that when intrinsic ion channels gate stochastically, the probability of initiation of dendritic or somatic spikes by dendritic synaptic input varies continuously between zero and one, whereas when ion channels gate deterministically, the probability is either zero or one. At physiological firing rates, stochastic gating of dendritic ion channels almost completely accounts for probabilistic somatic and dendritic spikes generated by the fully stochastic model. These results suggest that the consequences of stochastic ion channel gating differ globally between neuronal cell-types and locally between neuronal compartments. Whereas dendritic neurons are often assumed to behave deterministically, our simulations suggest that a direct consequence of stochastic gating of intrinsic ion channels is that spike output may instead be a probabilistic function of patterns of synaptic input to dendrites

    Interpretative and predictive modelling of Joint European Torus collisionality scans

    Get PDF
    Transport modelling of Joint European Torus (JET) dimensionless collisionality scaling experiments in various operational scenarios is presented. Interpretative simulations at a fixed radial position are combined with predictive JETTO simulations of temperatures and densities, using the TGLF transport model. The model includes electromagnetic effects and collisions as well as □(→┬E ) X □(→┬B ) shear in Miller geometry. Focus is on particle transport and the role of the neutral beam injection (NBI) particle source for the density peaking. The experimental 3-point collisionality scans include L-mode, and H-mode (D and H and higher beta D plasma) plasmas in a total of 12 discharges. Experimental results presented in (Tala et al 2017 44th EPS Conf.) indicate that for the H-mode scans, the NBI particle source plays an important role for the density peaking, whereas for the L-mode scan, the influence of the particle source is small. In general, both the interpretative and predictive transport simulations support the experimental conclusions on the role of the NBI particle source for the 12 JET discharges

    jULIEs: extracellular probes for recordings and stimulation in the structurally and functionally intact mouse brain

    No full text
    High signal-to-noise, scalable and minimally invasive recording and stimulation of the nervous system in intact animals is of fundamental importance to advance the understanding of brain function. Extracellular electrodes are among the most powerful tools capable of interfacing with large neuronal populations1-3. Neuronal tissue damage remains a major limiting factor in scaling electrode arrays, and has been found to correlate with electrode diameter across different electrode materials, such as microfabricated Michigan and Utah-style arrays4, MEMS and microsystems5, soft polymer or tungsten electrodes6 and Parylene C probes7. Small diameter ultramicroelectrodes (UMEs), while highly desirable, pose significant technical challenges such as reaching sufficient electrolyte-electrode coupling and limiting stray signal loss. To overcome these challenges, we have designed juxtacellular Ultra-Low Impedance Electrodes (jULIEs), a scalable technique for achieving high signal-to-noise electrical recordings as well as stimulation with UMEs. jULIEs are metal-glass composite UMEs thermally drawn to outer diameters (OD) of <25 µm, with metal core diameters (ID) of as little as 1 µm. We introduce a two-step electrochemical modification strategy that reduces UME coupling impedances by two orders of magnitude. Modifications enabled high signal-to-noise neural recordings in vivo through wires with micrometer scale core diameters. Histological and imaging experiments indicated that local vascular damage is minimal. Spikes reached amplitudes over 1 mV in vivo, indicating that recordings are possible in close proximity to intact neurons. Recording sites can be arranged in arbitrary patterns tailored to various neuroanatomical target structures and allowing parallel penetrations. jULIEs thus represent a versatile platform that allows for reliable recording and manipulation of neural activity in any areas of the functionally intact mammalian brain

    Comparative study of deuterium retention in irradiated Eurofer and Fe-Cr from a new ion implantation materials facility

    Get PDF
    A new facility to study the interaction of hydrogen isotopes with nuclear fusion-relevant first wall materials, and their retention and release, has been produced. The new facility allows for implanting a range of gases into samples, including tritium. An accurate study of isotope effects, such as the isotopic exchange in damaged microstructure, has previously been difficult due to a background signal of light hydrogen. This new capability will allow virtually background free measurements using tritium and deuterium. The design and build of this facility are described and commissioning results are presented. Within the UKAEA-led tritium retention in controlled and evolving microstructure (TRiCEM) project, this facility is used for the comparative study of deuterium retention in self-ion irradiated Eurofer steel and Fe?Cr alloy. Self-ion bombardment with energies of 0.5 MeV is used to mimic the defects created by neutrons in fusion power plants and the created traps are then filled with deuterium in the new facility. Implanted samples are analysed using thermal desorption spectrometry (TDS), secondary ion mass spectrometry (SIMS), and transmission electron microscopy. Results on the total deuterium content as a function of time, TDS spectra and SIMS analysis are presented. A comparison of the results for Eurofer and Fe?Cr revealed several differences. While some of them may be due to experimental details like different time delays between exposure and analysis, others, such as deuterium retention as function of dose, might be genuine and require further studies.Peer reviewe
    corecore