1,756 research outputs found

    Approximation of non-boolean 2CSP

    Full text link
    We develop a polynomial time Ω(1RlogR)\Omega\left ( \frac 1R \log R \right) approximate algorithm for Max 2CSP-RR, the problem where we are given a collection of constraints, each involving two variables, where each variable ranges over a set of size RR, and we want to find an assignment to the variables that maximizes the number of satisfied constraints. Assuming the Unique Games Conjecture, this is the best possible approximation up to constant factors. Previously, a 1/R1/R-approximate algorithm was known, based on linear programming. Our algorithm is based on semidefinite programming (SDP) and on a novel rounding technique. The SDP that we use has an almost-matching integrality gap

    How to Play Unique Games against a Semi-Random Adversary

    Full text link
    In this paper, we study the average case complexity of the Unique Games problem. We propose a natural semi-random model, in which a unique game instance is generated in several steps. First an adversary selects a completely satisfiable instance of Unique Games, then she chooses an epsilon-fraction of all edges, and finally replaces ("corrupts") the constraints corresponding to these edges with new constraints. If all steps are adversarial, the adversary can obtain any (1-epsilon) satisfiable instance, so then the problem is as hard as in the worst case. In our semi-random model, one of the steps is random, and all other steps are adversarial. We show that known algorithms for unique games (in particular, all algorithms that use the standard SDP relaxation) fail to solve semi-random instances of Unique Games. We present an algorithm that with high probability finds a solution satisfying a (1-delta) fraction of all constraints in semi-random instances (we require that the average degree of the graph is Omega(log k). To this end, we consider a new non-standard SDP program for Unique Games, which is not a relaxation for the problem, and show how to analyze it. We present a new rounding scheme that simultaneously uses SDP and LP solutions, which we believe is of independent interest. Our result holds only for epsilon less than some absolute constant. We prove that if epsilon > 1/2, then the problem is hard in one of the models, the result assumes the 2-to-2 conjecture. Finally, we study semi-random instances of Unique Games that are at most (1-epsilon) satisfiable. We present an algorithm that with high probability, distinguishes between the case when the instance is a semi-random instance and the case when the instance is an (arbitrary) (1-delta) satisfiable instance if epsilon > c delta

    Collaborative Learning of Stochastic Bandits over a Social Network

    Full text link
    We consider a collaborative online learning paradigm, wherein a group of agents connected through a social network are engaged in playing a stochastic multi-armed bandit game. Each time an agent takes an action, the corresponding reward is instantaneously observed by the agent, as well as its neighbours in the social network. We perform a regret analysis of various policies in this collaborative learning setting. A key finding of this paper is that natural extensions of widely-studied single agent learning policies to the network setting need not perform well in terms of regret. In particular, we identify a class of non-altruistic and individually consistent policies, and argue by deriving regret lower bounds that they are liable to suffer a large regret in the networked setting. We also show that the learning performance can be substantially improved if the agents exploit the structure of the network, and develop a simple learning algorithm based on dominating sets of the network. Specifically, we first consider a star network, which is a common motif in hierarchical social networks, and show analytically that the hub agent can be used as an information sink to expedite learning and improve the overall regret. We also derive networkwide regret bounds for the algorithm applied to general networks. We conduct numerical experiments on a variety of networks to corroborate our analytical results.Comment: 14 Pages, 6 Figure

    On the Expansion of Group-Based Lifts

    Get PDF
    A kk-lift of an nn-vertex base graph GG is a graph HH on n×kn\times k vertices, where each vertex vv of GG is replaced by kk vertices v1,,vkv_1,\cdots{},v_k and each edge (u,v)(u,v) in GG is replaced by a matching representing a bijection πuv\pi_{uv} so that the edges of HH are of the form (ui,vπuv(i))(u_i,v_{\pi_{uv}(i)}). Lifts have been studied as a means to efficiently construct expanders. In this work, we study lifts obtained from groups and group actions. We derive the spectrum of such lifts via the representation theory principles of the underlying group. Our main results are: (1) There is a constant c1c_1 such that for every k2c1ndk\geq 2^{c_1nd}, there does not exist an abelian kk-lift HH of any nn-vertex dd-regular base graph with HH being almost Ramanujan (nontrivial eigenvalues of the adjacency matrix at most O(d)O(\sqrt{d}) in magnitude). This can be viewed as an analogue of the well-known no-expansion result for abelian Cayley graphs. (2) A uniform random lift in a cyclic group of order kk of any nn-vertex dd-regular base graph GG, with the nontrivial eigenvalues of the adjacency matrix of GG bounded by λ\lambda in magnitude, has the new nontrivial eigenvalues also bounded by λ+O(d)\lambda+O(\sqrt{d}) in magnitude with probability 1keΩ(n/d2)1-ke^{-\Omega(n/d^2)}. In particular, there is a constant c2c_2 such that for every k2c2n/d2k\leq 2^{c_2n/d^2}, there exists a lift HH of every Ramanujan graph in a cyclic group of order kk with HH being almost Ramanujan. We use this to design a quasi-polynomial time algorithm to construct almost Ramanujan expanders deterministically. The existence of expanding lifts in cyclic groups of order k=2O(n/d2)k=2^{O(n/d^2)} can be viewed as a lower bound on the order k0k_0 of the largest abelian group that produces expanding lifts. Our results show that the lower bound matches the upper bound for k0k_0 (upto d3d^3 in the exponent)

    Design Method Development for the Design of Traction Systems

    Get PDF
    The objective of this research is to develop a design method for rapid exploration of traction concepts primarily for off-road vehicles. Different approaches available to achieve this objective are discussed and compared, such as computational, analytical, and physical methods. Computational approaches are based on simulations performed using Finite Element Method (FEM), Discrete Element Method (DEM), and combined Finite Element-Discrete Element (FE-DE) methods. Analytical approaches are based on closed form mathematical models developed by previous researchers based on the theory of plasticity. Physical approaches include fabrication and testing of prototypes at different levels of abstraction. This thesis compares these different approaches to design with respect to design process requirements of (1) timeliness, (2) cost, (3) required expertise, (4) accuracy of results, (5) flexibility to adapt to new designs and (6) stage of design process. This comparison is done both at a theoretical level and at an implemented level where each of the strategies are used to try and delineate between different classes of traction concepts. It is proposed that the physical prototyping approach should be the preferred approach with respect to these criteria. A new structured design approach is developed based on these findings to employ the different modeling schemes at stages of the design process that are most appropriate based on the technological maturity of this specific application domain
    corecore