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Abstract
A k-lift of an n-vertex base graph G is a graph H on n× k vertices, where each vertex v of G is
replaced by k vertices v1, . . . , vk and each edge uv in G is replaced by a matching representing
a bijection πuv so that the edges of H are of the form (ui, vπuv(i)). Lifts have been investigated
as a means to efficiently construct expanders. In this work, we study lifts obtained from groups
and group actions. We derive the spectrum of such lifts via the representation theory principles
of the underlying group. Our main results are:
1. A uniform random lift by a cyclic group of order k of any n-vertex d-regular base graph G,

with the nontrivial eigenvalues of the adjacency matrix of G bounded by λ in magnitude,
has the new nontrivial eigenvalues bounded by λ + O(

√
d) in magnitude with probability

1 − ke−Ω(n/d2). The probability bounds as well as the dependency on λ are almost optimal.
As a special case, we obtain that there is a constant c1 such that for every k ≤ 2c1n/d

2 , there
exists a lift H of every Ramanujan graph by a cyclic group of order k such that H is almost
Ramanujan (nontrivial eigenvalues of the adjacency matrix at most O(

√
d) in magnitude).

We also show how this result leads to a quasi-polynomial time deterministic algorithm to
construct almost Ramanujan expanders.

2. There is a constant c2 such that for every k ≥ 2c2nd, there does not exist an abelian k-lift H of
any n-vertex d-regular base graph such that H is almost Ramanujan. This can be viewed as
an analogue of the well-known no-expansion result for constant degree abelian Cayley graphs.

Suppose k0 is the order of the largest abelian group that produces expanding lifts. Our two
results highlight lower and upper bounds on k0 that are tight upto a factor of d3 in the exponent,
thus suggesting a threshold phenomenon.
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1 Introduction

Expander graphs have spawned research in pure and applied mathematics during the
last several years, with applications in multiple fields including complexity theory, robust
computer networks, error-correcting codes, de-randomization, compressed sensing and metric
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embeddings [28, 16]. Informally, an expander is a graph in which every small subset of vertices
has a relatively large edge boundary. Most applications are concerned with d-regular graphs.
The largest eigenvalue of the adjacency matrix of d-regular graphs is d and is known as a
trivial eigenvalue. In case of bipartite d-regular graphs, the largest and smallest eigenvalues
of their adjacency matrix are d and −d and these are referred to as trivial eigenvalues. The
expansion of d-regular graphs is determined by the difference between d and the largest
(in magnitude) non-trivial eigenvalue of the adjacency matrix, denoted λ. Roughly, the
smaller λ is, the better the graph expansion. The Alon-Boppana bound ([25]) states that
λ ≥ 2

√
d− 1− o(1) for non-bipartite graphs. Thus, graphs with λ ≤ 2

√
d− 1 are optimal

expanders and are called Ramanujan.
A simple probabilistic argument shows the existence of infinite families of expander graphs

[26]. However, constructing such infinite families explicitly has proven to be a challenging and
important task. It is easy to construct Ramanujan graphs with a small number of vertices:
d-regular complete graphs and complete bipartite graphs are Ramanujan. The challenge is
to construct an infinite family of d-regular graphs that are all Ramanujan, which was first
achieved by Lubotzky, Phillips and Sarnak [19] and Margulis [23]. They built Ramanujan
graphs from Cayley graphs. All of their graphs are regular, have degrees p+ 1 where p is a
prime, and their proofs rely on deep number theoretic facts. In two breakthrough papers,
Marcus, Spielman, and Srivastava showed the existence of bipartite Ramanujan graphs of
all degrees [21, 22]. However they do not provide an efficient algorithm to construct those
graphs. Cohen [7] adapted the techniques of [22]to design an efficient algorithm to construct
Ramanujan multi-graphs. A striking result of Friedman [10] and a slightly weaker but more
general result of Puder [27], shows that almost every d-regular graph on n vertices is very
close to being Ramanujan, i.e., for every ε > 0, asymptotically almost surely, λ < 2

√
d− 1+ ε.

It is still unknown whether the event that a random d-regular graph is exactly Ramanujan
happens with constant probability. Despite a large body of work on the topic, all attempts
to efficiently construct large Ramanujan expander (simple) graphs of any given degree have
failed, and exhibiting such a construction remains an intriguing open problem.

A combinatorial approach to constructing expanders, initiated by Friedman [9], is to
obtain new (larger) Ramanujan graphs from smaller ones. In this approach, we start with
a base graph which is “lifted” to obtain a larger graph. Concretely, a k-lift of an n-vertex
base-graph G is a graph H on k × n vertices , where each vertex u of G is replaced by k
vertices u1, . . . , uk and each edge uv in G is replaced by a matching between u1, . . . , uk and
v1, . . . , vk. In other words, for each edge uv of G there is a permutation πuv of k elements so
that the corresponding k edges of H are of the form uivπuv(i). The graph H is a (uniformly)
random lift of G if for every edge uv the bijection πuv is chosen uniformly at random from
the set Sk of permutations of k elements.

Since we are focusing on Ramanujan graphs, we will restrict our attention to lifts of
d-regular graphs. It is easy to see that any lift H of a d-regular base-graph G is itself
d-regular and inherits all the eigenvalues of G. We will refer to the inherited eigenvalues as
“old” eigenvalues and the rest of the eigenvalues as “new” eigenvalues. In order to use the lifts
approach for constructing expanders, it is necessary that the lift also inherit the expansion
properties of the base graph. Naturally, one hopes that a random lift of a Ramanujan graph
will also be (almost) Ramanujan with high probability.

Friedman [9] first studied the eigenvalues of random k-lifts of regular graphs and proved
that every new eigenvalue of H is O(d3/4) with high probability. He conjectured a bound
of 2
√
d− 1 + o(1), which would be tight (see, e.g. [14]). Linial and Puder [17] improved

Friedman’s bound to O(d2/3). Lubetzky, Sudakov and Vu [18] showed that the magnitude
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of every nontrivial eigenvalue of the lift is O(λ log d), where λ is the largest (in magnitude)
nontrivial eigenvalue of the base graph, thus improving on the previous results when G

is significantly expanding. Adarrio-Berry and Griffiths [1] further improved the bounds
above by showing that every new eigenvalue of H is O(

√
d), and Puder [27] proved the

nearly-optimal bound of 2
√
d− 1 + 1. All those results hold with probability tending to 1 as

k → ∞, thus the order k of the lift in question needs to be large. Nearly no results were
known in the regime where k is bounded with respect to the number of nodes n of the graph.
A “relativized” version of the Alon-Boppana Conjecture regarding lower-bounding the new
eigenvalues of lifts was also recently shown in [12] and [4].

Bilu and Linial [3] were the first to study k-lifts of graphs with bounded k, and suggested
constructing Ramanujan graphs through a sequence of 2-lifts of a base graph: start with
a small d-regular Ramanujan graph on some finite number of nodes (e.g. Kd+1). Every
2-lift operation doubles the number of vertices in the graph. If there is a way to preserve
expansion after lifting, then repeating this operation will give large good expanders of the
same bounded degree d. The authors in [3] showed that if the starting graph G is significantly
expanding so that λ(G) = O(

√
d log d), then there exists a random 2-lift of G that has all its

new eigenvalues upper-bounded in magnitude by O(
√
d log3 d). In a recent breakthrough

work, Marcus, Spielman and Srivastava [21] showed that for every bipartite d-regular graph
G, there exists a 2-lift of G, such that the new eigenvalues achieve the Ramanujan bound of
2
√
d− 1. But their result still does not provide an efficient algorithm to find such lifts.

1.1 Our Results
In this work, we study the lifts approach to efficiently construct almost Ramanujan expanders
of all degrees. We derive these lifts from groups. This is a natural generalization of Cayley
graphs.

I Definition 1 (Γ-lift). Let Γ be a group of order k with · denoting the group operation. A
Γ-lift of an n-vertex base graph G = (V,E) is a graph H = (V × Γ, E′) obtained as follows:
it has k × n vertices, where each vertex u of G is replaced by k vertices {u} × Γ. For each
edge uv of G, we choose an element guv ∈ Γ and replace that edge by a perfect matching
between {u} × Γ and {v} × Γ that is given by the edges uivj for which guv · i = j.

We denote the order k of the group Γ to be the order of the lift. We refer to Γ-lifts
obtained using Γ = Z/kZ, the additive group of integers modulo k, as shift k-lifts. Since
every cyclic group of order k is isomorphic to Z/kZ, we have that Γ-lifts are shift k-lifts
whenever Γ is a cyclic group of order k.

A tight connection between the spectrum of Γ-lifts and the representation theory of
the underlying group Γ is known [24, 8]. This connection tells us that the lift incurs the
eigenvalues of the base graph, while its new eigenvalues are the union of eigenvalues of a
collection of matrices arising from the group elements assigned to the edges and the irreducible
representations of the group. We note that this connection has also been recently used in
[15] in the context of expansion of lifts, aiming to generalize the results in [22]. In this work,
we address the expansion of Γ-lifts obtained from cyclic groups and abelian groups.

In order to understand the expansion properties of lifts, it suffices to focus on the new
eigenvalues of the lifted graph by the above-mentioned connection. We present a high
probability bound on the expansion of random shift k-lifts for bounded k.

I Theorem 2. Let G be a d-regular n-vertex graph, where 2 ≤ d ≤
√
n/(3 lnn), with largest

(in magnitude) non-trivial eigenvalue λ, where λ ≥
√
d. Let H be a random shift k-lift of G

APPROX/RANDOM’17
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with λnew being the largest (in magnitude) new eigenvalue of H. Then

λnew = O(λ)

with probability 1−k·e−Ω(n/d2). Moreover, if G is moderately expanding such that λ ≤ d/ log d,
then

λnew − λ = O(
√
d)

with probability 1− k · e−Ω(n/d2).

We say that a graph is almost Ramanujan if all its non-trivial eigenvalues are bounded
by O(

√
d) in magnitude. By the above result, if the base graph G is Ramanujan, then the

random shift k-lift will be almost Ramanujan with high probability.

Remark 1. In contrast to lifts of order k, where k →∞ when n→∞, the dependency of
λnew on λ is necessary for the case of bounded k. This has previously been observed by the
authors in [3] who gave the following example: Let G be a disconnected graph on n vertices
that consists of n/(d + 1) copies of Kd+1, and let H be a random 2-lift of G. Then the
largest non-trivial eigenvalue of G is λ = d and it can be shown that with high probability,
λnew = λ = d. Therefore, our eigenvalue bounds are nearly tight.

Specializing Theorem 2 for the case of 2-lifts gives the following Corollary which improves
upon the multiplicative log d factor in the eigenvalue bound that is present in the result of
Bilu-Linial [3].

I Corollary 3. Let G be a d-regular n-vertex graph, where 2 ≤ d ≤
√
n/(3 lnn), with largest

(in magnitude) non-trivial eigenvalue λ, where λ ≥
√
d. Let H be a random 2-lift of G with

λnew being the largest (in magnitude) new eigenvalue of H. Then

λnew = O(λ)

with probability 1− e−Ω(n/d2). Moreover, if G is moderately expanding such that λ ≤ d/ log d,
then

λnew − λ = O(
√
d)

with probability 1− e−Ω(n/d2).

Remark 2. The multiplicative log d factor in the eigenvalue bound present in the result of
Bilu-Linial [3] arises due to the use of the converse of the Expander Mixing Lemma along
with an epsilon-net style argument in their analysis. The converse of the Expander Mixing
Lemma is provably tight, so straightforward use of the converse will indeed incur the log d
factor. We are able to improve the eigenvalue bound by performing a fine-grained analysis of
the epsilon-net argument, avoiding direct use of the converse.

Lifts based on groups immediately suggest an algorithm towards building d-regular n-
vertex Ramanujan expanders. In order to describe this algorithm, we first describe the
brute-force algorithm that follows from the existential result of [21]. The approach is to start
with the complete bipartite graph Kd,d and lift the graph log2(n/2d) times. At each stage,
we do a brute-force search over the space of all possible 2-lifts and pick the best one (i.e.,
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one with smallest new maximum eigenvalue in magnitude). However, since a graph (V,E)
has 2|E| possible 2-lifts, it follows that the final lift will be chosen from among 2nd/4 possible
2-lifts, which means that the brute force algorithm will run in time exponential in nd.

Next, suppose that for every k ≥ 2, we are guaranteed the existence of a group Γ of order
k such that for every base graph there exists a Γ-lift that has all its new eigenvalues at most
2
√
d− 1 in magnitude. For example, [5] suggests the possibility that for every k and for every

base graph, there exists a shift k-lift that has all new eigenvalues with magnitude at most
2
√
d− 1. Then a brute force algorithm similar to the one above, would perform only one lift

operation of the base graph Kd,d to create a Γ-lift with n = 2dk vertices. This algorithm
would only have to choose the best among kd2 possibilities (k different choices of group
element per edge of the base graph), which is polynomial in n, the size of the constructed
graph (here we have assumed that d is a constant). This motivates the following question:
what is the largest possible group Γ that might produce expanding Γ-lifts? Our next result
rules out the existence of large abelian groups that might lead to (even slightly) expanding
lifts.

I Theorem 4. For every n-vertex d-regular graph G, every real-value ε ∈ (0, 1/e), and every
abelian group Γ of size at least

k = exp

(
nd log 1

ε + logn
log 1

eε

)
,

all Γ-lifts H of G has a new eigenvalue that is at least εd in magnitude. In particular, when
k = 2Ω(nd), there is no Γ-lift H of any n-vertex d-regular graph G all of whose eigenvalues
are bounded by O(

√
d) in magnitude whenever Γ is an abelian group of order k.

Theorem 4 shows that we cannot expect to have arbitrarily large abelian groups with
expanding lifts as suggested in [5].

Remark 3. The first and only known efficient construction of Ramanujan expander simple
graphs are Cayley graphs of certain groups [19]. We observe that a Cayley graph for a
group Γ with generator set S can be obtained as a Γ-lift of the bouquet graph (a graph that
consists of one vertex with multiple self loops) [20]. Our no-expansion result for abelian
groups complements the known result on no-expansion of abelian Cayley graphs [13].

Remark 4. Our Theorems 4 and 2 can be viewed as lower and upper bounds on the largest
order k0 of an abelian group Γ such that for every n-vertex graph, there exists a Γ-lift
for which all new eigenvalues are O(

√
d). On the one hand, Theorem 2 shows that, for

k = 2O(n/d2), most of the shift k-lifts of a Ramanujan graph have their new eigenvalues to
be O(

√
d). On the other hand, Theorem 4 shows that for k = 2Ω(nd), there is no shift k-lift

that achieves such eigenvalue guarantees. This suggests a threshold behavior for k0.

We observe that Theorem 2 leads to a deterministic quasi-polynomial time algorithm for
constructing almost Ramanujan families of graphs.

I Theorem 5. There exists an algorithm that runs in time 2O(d4 log2 n) to construct a d-regular
n-vertex graph such that all its non-trivial eigenvalues are O(

√
d) in magnitude.

Proof. We use Algorithm 1. We note that the choice of r in the first step ensures that
r = O(d2 logn). By Theorem 2, there exists a lift G of the base graph G′ such that

APPROX/RANDOM’17
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Algorithm 1 Quasi-polynomial time algorithm to construct expanders of arbitrary size n.

1: Pick an r such that r2cr/d2 = n, for a constant c that appears in the eigenvalue bound
in Theorem 2. Do an exhaustive search to find a d-regular graph G′ on r vertices with
λ = O(

√
d).

2: For k = 2cr/d2 , do an exhaustive search to find a shift k-lift G of the base graph G′ with
minimum new eigenvalue (in magnitude).

λ(G) = O(
√
d). Thus, the exhaustive search in the second step gives a graph G whose

non-trivial eigenvalues are O(
√
d) in magnitude.

In order to bound the running time, we note that the first step can be implemented to
run in time 2O(r2) = 2O(d4 log2 n). To bound the running time of the second step, we observe
that for each edge in G′, there are k possible choices. Therefore, the size of the search space
is at most krd/2 = 2cr2/2d = 2O(d3 log2 n) and for each k-lift, it takes poly(n) time to compute
λ(G). Thus, the overall running time of the algorithm is 2O(d4 log2 n). J

Organization. We give some preliminary definitions, notations, facts and lemmas in Sec-
tion 2. We prove Theorem 4 in Section 3. We illustrate the techniques behind proving
Theorem 2 by presenting and proving a slightly weaker version of Theorem 2 (see Theorem 11)
in Section 4. For proofs of the concentration inequality (Lemma 12) needed for the weaker
version and Theorem 2, we refer the reader to the full version of the paper [2].

2 Preliminaries

In this section, we define certain notations and present the needed combinatorial inequalities
and facts.

Notations. Let G := (V,E) be a d-regular graph with n vertices. If G is d-regular bipartite,
we will assume that the bipartition of the vertex set is given by ({1, . . . , n/2}, {n/2+1, . . . , n}).
Let A be the adjacency matrix of G. Since A is a real symmetric matrix, its eigenvalues are
also real. Let the eigenvalues of A be λ1 ≥ λ2 ≥ . . . ≥ λn. For a d-regular graph G, it is
well-known that λ1 = d. If G is bipartite, then λn = −d and we define λG := max{|λi| : i ∈
{2, 3, . . . , n− 1}}. If G is non-bipartite, we define λG := max{|λi| : i ∈ {2, 3, . . . , n}}. Thus,
λG denotes the largest (in magnitude) non-trivial eigenvalue of G. When G is clear from the
context, we will drop the subscript and simply write λ. For subsets S, T ⊆ V , let E(S, T )
be the number of edges uv ∈ E with u ∈ S and v ∈ T . We denote the largest eigenvalue of
a matrix M by ‖M‖ and the support of a vector x by S(x). We define log() to be the log
function with base 2. We represent ex by exp(x). Given a vector x whose coordinates are
from {0,±2−1,±2−2, . . . ,±2−i, . . .} we define the diadic decomposition of x as the collection
of vectors {2−iui}i∈Z where each ui is a vector whose j’th coordinate is defined as

[ui]j :=


1 if xj = 2−i,
−1 if xj = −2−i,
0 otherwise.

I Lemma 6 (Discretization Lemma). Let M ∈ Rn×n be a matrix with diagonal entries
being 0.
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1. For every x ∈ Rn with ||x||∞ ≤ 1/2 there exists y ∈ {0,±2−1,±2−2, . . . ,±2−i, . . .}n such
that |xTMx| ≤ |yTMy| and ‖y‖2 ≤ 4‖x‖2. Moreover, each coordinate of x between 2−i
and 2−(i−1) is rounded to either 2−i or 2−(i−1) and between −2−i and −2−(i−1) is rounded
to either −2−i or −2−(i−1) in y.

2. For every x1, x2 ∈ Rn with ||x1||∞, ||x2||∞ ≤ 1/2, there exist y1, y2 ∈ {0,±2−1, ..,±2−i, ..}n
such that |xT1 Mx2| ≤ |yT1 My2|, ‖y1‖2 ≤ 4‖x1‖2, ‖y2‖2 ≤ 4‖x2‖2 and for b ∈ {1, 2} each
coordinate of xb between 2−i and 2−(i−1) is rounded to either 2−i or 2−(i−1) and between
−2−i and −2−(i−1) is rounded to either −2−i or −2−(i−1) in yb.

We need the following theorem showing that expanders have small diameter in order to
show no-expansion of large abelian lifts.

I Theorem 7 ([6]). The diameter of a d-regular graph G with n vertices is at most logn
log(d/λG) .

Lifts. We now state the relevant spectral properties of lifts (we derive the spectrum of
general group-based lifts in the full version [2]). Some initial easy observations can be made
about the structure of any lift: (i) the lifted graph is also regular with the same degree
as the base graph and (ii) the eigenvalues of the adjacency matrix of the base graph are
also eigenvalues of AH . Therefore we call the n eigenvalues of the base graph as the old
eigenvalues and the n(k− 1) other eigenvalues of AH as the new eigenvalues. We will denote
by λnew the largest new eigenvalue of H in magnitude, which we also refer to as the “first”
new eigenvalue for simplicity.

I Definition 8 (Signing). Let G = (V,E) be a base graph. Let Ef denote an arbitrary
orientation of the edges of G and Er denote the reverse orientation. Given a group Γ, a set
S and an action · of Γ on S as in the Definition 1, we define a signing of G as a function
s : Ef ∪ Er → Γ with the property that if s(u, v) = g then s(v, u) = g−1.

We observe that there is a bijection between signings and Γ-lifts. For the purposes of proving
the results, we only need the spectrum of shift k-lifts. For a shift k-lift of a graph G = (V,E)
with adjacency matrix A, which is given by the signing (s(i, j) = gi,j)(i,j)∈E , define the
following family of Hermitian matrices As(ω) parameterized by ω where ω is a primitive k-th
root of unity:

[As(ω)]ij =
{

0 if Aij = 0, and
ωgi,j if Aij = 1.

The following lemma regarding the spectrum of shift k-lifts follows from classic results in
representation theory.

I Lemma 9. Let G = (V,E) be a graph and H be a shift k-lift of G with the corresponding
signing of the edges (s(i, j) = gi,j)(i,j)∈E, where gi,j ∈ Ck. Then the set of eigenvalues of H
are given by ⋃

ω: ω is a primitive k-th root of unity
eigenvalues (As(ω)) .

The above simplifies significantly for 2-lifts as noted in the next corollary.

I Corollary 10. When k = 2, the set of eigenvalues of a 2-lift H is given by the eigenvalues
of A and the eigenvalues of As, where As is the signed adjacency matrix corresponding to
the signing s, with entries from {0, 1,−1}.

APPROX/RANDOM’17
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3 No-expansion of Abelian Lifts

In this section we show that it is impossible to find (even slightly) expanding graphs using
lifts in large abelian groups Γ and thus prove Theorem 4 . By Theorem 7, we know that if a
graph is an expander, then it has small diameter. We show that if the size of the (abelian)
group Γ is large, then all Γ-lifts of any base graph have large diameter, and hence they
cannot be expanders. We restate Theorem 4 for convenience.

I Theorem 4. For every n-vertex d-regular graph G, every real-value ε ∈ (0, 1/e), and every
abelian group Γ of size at least

k = exp

(
nd log 1

ε + logn
log 1

eε

)
,

all Γ-lifts H of G has a new eigenvalue that is at least εd in magnitude. In particular, when
k = 2Ω(nd), there is no Γ-lift H of any n-vertex d-regular graph G all of whose eigenvalues
are bounded by O(

√
d) in magnitude whenever Γ is an abelian group of order k.

Proof. We prove the contrapositive. Let Γ be an abelian group of order k and G = (V,E)
be a base graph on n-vertices that is d-regular. Let e1, . . . , end/2 be an arbitrarily chosen
ordering of the edges E. Let H be a lift graph obtained using a Γ-lift. Recall that the signing
of the edges of the base graph correspond to group elements, which in turn correspond to
permutations of k elements. Let these signing of the edges be (σe)e∈E(G). Let us define a
layer Li of H to be the set of vertices {vi : v ∈ V }. We note that H has k layers.

Let us fix an arbitrary vertex v in G. Let ∆ denote the diameter of H. Then, for every j ∈
{2, . . . , k} there exists a path of length at most ∆ in H from v1 to a vertex in Lj . A layer j is
reachable within distance ∆ in H iff there exists a walk e1, e2, . . . , et from v of length t ≤ ∆ in
G such that σetσet−1 . . . σe2σe1(1) = j. Thus the set of layers reachable within distance ∆ inH
is contained in the set S := {σet . . . σe1(1) : e1, . . . , et is a walk from v in G of length t ≤ ∆}.
Since the group Γ is abelian, S ⊆ {σa1

e1
σa2
e2
. . . σ

and/2
end/2 (1) |

∑nd/2
i=1 |ai| ≤ ∆} =: T . Since H has

k layers, the cardinality of S is at least k.
The number of integral ai’s satisfying

∑nd/2
i=1 |ai| ≤ ∆ is at most

((nd/2)+∆
(nd/2)

)
· 2(nd/2).

Therefore,

k ≤ |T | ≤
(nd

2 + ∆
nd
2

)
2nd2 ≤

(
2e
(

1 + 2∆
nd

))nd
2

≤ (2e)nd2 e∆.

Since H has nk vertices, using Theorem 7, we have ∆ ≤ (lognk)/ log(d/λ(H)). Thus, if
λ(H) ≤ εd, then ∆ ≤ (lognk)/ log(1/ε) and consequently,

k ≤ (2e)nd2 e
lognk
log 1

ε .

Rearranging the terms, we obtain that

k ≤ (2e)

nd

2

(
1− 1

log 1
ε

)
exp

 logn(
log 1

ε

) (
1− 1

log 1
ε

)
 ≤ exp(nd log 1

ε + logn
log 1

eε

)
. J

4 Expansion of Random 2-lifts: Overview

In this section, we illustrate the main techniques involved in proving Theorem 2 by stating
and proving a slightly weaker version, namely Theorem 11. It focuses only on 2-lifts akin
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to Corollary 3 and is weaker in comparison to the eigenvalue bound in Corollary 3 by a
multiplicative factor of four. The proof of this weaker result captures the main ideas involved
in the proof of Theorem 2.

I Theorem 11. Let G be a d-regular n-vertex graph, where 2 ≤ d ≤
√
n/(3 lnn), with largest

(in magnitude) non-trivial eigenvalue λ, where λ ≥
√
d. Let H be a random 2-lift of G with

λnew being the largest (in magnitude) new eigenvalue of H. Then,

λnew ≤ 4λ+ 1014 max
(√

λ log d,
√
d
)

with probability at least 1− e−n/d2 .

In order to prove this theorem, we use the concentration inequality in Lemma 12 (recall that
for a vector x, its support is denoted by S(x)).

I Lemma 12. Let G be a d-regular n-vertex graph, where 2 ≤ d ≤
√
n/(3 lnn), with largest

(in magnitude) non-trivial eigenvalue λ, where λ ≥
√
d. Let H be a random 2-lift of G with

corresponding signed adjacency matrix As. The following statements hold with probability at
least 1− e−n/d2 :
1. For all u1, . . . , ur ∈ {0,±1}n, and v1, . . . , v` ∈ {0,±1}n satisfying

(I) S(ui) ∩ S(uj) = ∅ for every i, j ∈ [r] and S(vi) ∩ S(vj) = ∅ for every i, j ∈ [`], and
(II) Either |S(ui)| > n/d2 for every i ∈ [r] with non-zero ui, or |S(vi)| > n/d2 for every

i ∈ [`] with non-zero vi,
we have∣∣∣∣∣∣

∑
i≤j

(2−iuTi )As(2−jvj)

∣∣∣∣∣∣ ≤ 377 max(
√
λ log d,

√
d)

r∑
i=1
|S(ui)|2−2i+

(
λ

5 + 1012
√
d

)∑̀
j=1
|S(vj)|2−2j .

3. For all u1, . . . , ur ∈ {0,±1}n, and v1, . . . , v` ∈ {0,±1}n satisfying (I), (II) and
(III) |S(ui)| > |S(vj)| for every i ∈ [r], j ∈ [`] with non-zero ui,
we have∣∣∣∣∣∣
∑
i≤j

(2−iuTi )As(2−jvj)

∣∣∣∣∣∣ ≤ 31 max
(√

λ log d,
√
d
) r∑

i=1
|S(ui)|2−2i +

∑̀
j=1
|S(vj)|2−2i

 .

We show the concentration inequality in Lemma 12 from Hoeffding’s inequality by taking
a suitable union bound (see the full version of the work [2] for a complete proof). We will
now prove Theorem 11 using the lemma above. Our proof strategy resembles the proof
strategy in [11].

Proof of Theorem 11. Let s denote the signing corresponding to H and As denote the
signed adjacency matrix. By Corollary 10, the largest (in magnitude) new eigenvalue of
the lift is λnew = maxx∈Rn |xTAsx|/xTx. To prove an upper bound on λnew, we will bound
|xTAsx|/xTx for all x with high probability. In particular, assuming that the events given
by Lemma 12 hold, we will show that∣∣xTAsx∣∣ ≤ 4

(
λ+ 1013

√
d
)
‖x‖2.

APPROX/RANDOM’17
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By re-scaling we may assume that the maximum entry of x is less than 1/2 in absolute
value. By Lemma 6, there exists a vector y ∈ {0,±2−1,±2−2, . . . ,±2−i, . . .}n such that
|xTAsx| ≤ |yTAsy| and ‖y‖2 ≤ 4‖x‖2. We will prove a bound on |yTAsy| for every
y ∈ {0,±2−1,±2−2, . . . ,±2−i, . . .}n, which in turn will imply the desired bound on |xTAsx|.
Let us consider the diadic decomposition of y =

∑∞
i=1 2−iui obtained as follows: a coordinate

of ui is 1 if the corresponding coordinate of y is 2−i, it is −1 if the corresponding coordinate
of y is −2−i, and is zero otherwise. We note that S(ui) ∩ S(uj) = ∅ for every pair i, j ∈ N.

Next, we partition the set of vectors ui’s based on their support sizes. Let M := {i ∈ N :
|S(ui)| ≤ n/d2} and L := {i ∈ N : |S(ui)| > n/d2} (we abbreviateM and L for mini and large
supports respectively). Correspondingly, define yM :=

∑
i∈M 2−iui and yL =

∑
i∈L 2−iui.

We note that y = yM + yL, ‖y‖2 = ‖yM‖2 + ‖yL‖2 =
∑
i∈N |S(ui)|2−2i, and

|yTAsy| ≤ |yTMAsyM |+ 2|yTMAsyL|+ |yTLAsyL|.

We next bound each term in the following three claims.

I Claim 13.

|yTMAsyM | ≤
(
λ+ 8

d

)
‖yM‖2.

Proof. Let y′M be a vector obtained from yM by taking the absolute values of each entry.
Then ‖yM‖2 = ‖y′M‖2 and |yTMAsyM | ≤ y′TMAy

′
M . Let J = vvT and J ′ = v′v′T where v

is all ones vector and v′ is defined as follows: v′i = 1 for 1 ≤ i ≤ n/2 and v′i = −1 for
n/2 + 1 ≤ i ≤ n. For non-bipartite graph G, we have

y′TMAy
′
M = y′TM

(
A− d

n
J

)
y′M + y′TM

(
d

n
J

)
y′M ≤ λ‖y′M‖2 + y′TM

(
d

n
J

)
y′M .

Above, we have used the fact that A− d
nJ has the same set of eigenvalues as A except for

one – the eigenvalue d for the matrix A is translated to zero for the matrix A− d
nJ . Similarly,

for bipartite graphs, we have

y′TMAy
′
M = y′TM

(
A− d

n
J + d

n
J ′
)
y′M + y′TM

(
d

n
J

)
y′M − y′TM

(
d

n
J ′
)
y′M

≤ λ‖y′M‖2 + y′TM

(
d

n
J

)
y′M − y′TM

(
d

n
J ′
)
y′M .

Above, we have used the fact that A− d
nJ + d

nJ
′ has the same set of eigenvalues as A except

for two – the largest (in magnitude) two eigenvalues d for the matrix A are translated to
zero for the matrix A− d

nJ + d
nJ
′. It remains to bound |y′TM

(
d
nJ
)
y′M | and |y′TM

(
d
nJ
′) y′M |.

Consider the diadic decomposition of y′M =
∑
i∈M 2−iu′i, where the coordinates of u′i are the

absolute values of the coordinates of ui.∣∣∣∣y′TM ( dnJ
)
y′M

∣∣∣∣ , ∣∣∣∣y′TM ( dnJ ′
)
y′M

∣∣∣∣ ≤ 2
∑
i∈M

∑
j∈M :j≥i

d

n
2−i|S(ui)|2−j |S(uj)|

≤ 2
∑
i∈M

1
d

2−2i|S(ui)|
∑

j∈M :j≥i
2i−j

≤ 4
d
‖y′M‖2.

The second inequality follows by noting that |S(uj)| ≤ n/d2 ∀ j ∈M J
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I Claim 14.

|yTLAsyL| ≤
(

2λ
5 + (3 · 1012) max

(√
λ log d,

√
d
))
‖yL‖2.

Proof. By triangle inequality,

|yTLAsyL| =

∣∣∣∣∣∣
∑
i,j∈L

(2−iuTi )As(2−juj)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

i,j∈L:i≤j
(2−iui)As(2−juj)

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

i,j∈L:i>j
(2−iui)As(2−juj)

∣∣∣∣∣∣ .
We bound each term using the first part of Lemma 12. We now clarify our choice of

parameters to apply Lemma 12. For both terms, our choice is r ← max{i ∈ L}, ` = r,
ui ← ui if i ∈ L and ui ← 0 if i 6∈ L, vi = ui for every i ∈ [r], where 0 is the all-zeroes vector.
We note that the conditions (I) and (II) of Lemma 12 are satisfied by this choice since every
pair S(ui), S(uj) is mutually disjoint and |S(ui)| > n/d2 for all i ∈ L. Consequently,

|yTLAsyL| ≤ 754 max
(√

λ log d,
√
d
)∑
i∈L
|S(ui)|2−2i +

(
λ

5 + 2 · 1012
√
d

)∑
j∈L
|S(uj)|2−2j

≤
(

2λ
5 + (2 · 1012 + 754) max

(√
λ log d,

√
d
))
‖yL‖2. J

I Claim 15.

|yTMAsyL| ≤ 408 max
(√

λ log d,
√
d
)
‖yM‖2 +

(
λ

5 + (2 · 1012) max
(√

λ log d,
√
d
))
‖yL‖2.

Proof. By triangle inequality,

|yTMAsyL| =

∣∣∣∣∣∣
∑

i∈M,j∈L
(2−iuTi )As(2−juj)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

i∈M,j∈L:i≤j
(2−iui)As(2−juj)

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

i∈M,j∈L:i>j
(2−iui)As(2−juj)

∣∣∣∣∣∣ .
We bound the first and second terms by the first and second parts of Lemma 12 respectively.

Let 0 be the all-zeroes vector. We now clarify our choice of parameters to apply Lemma 12.
For the first term, our choice is r ← max{i ∈ M}, ` ← max{i ∈ L}, ui ← ui if i ∈ M and
ui ← 0 if i 6∈M , and vi ← ui if i ∈ L and vi ← 0 if i 6∈ L. For the second term, our choice
is r ← max{i ∈ L}, `← max{i ∈ M}, ui ← ui if i ∈ L and ui ← 0 if i 6∈ L, and vi ← ui if
i ∈M and vi ← 0 if i 6∈M . The conditions (I), (II) and (III) of Lemma 12 are satisfied for
the respective choices since every pair S(ui), S(uj) is mutually disjoint, |S(ui)| > n/d2 for
all i ∈ L and |S(ui)| > n/d2 ≥ |S(uj)| for every i ∈ L, j ∈M . Consequently,

|yTMAsyL| ≤ 377 max
(√

λ log d,
√
d
)∑
i∈M
|S(ui)|2−2i +

(
λ

5 + 1012
√
d

)∑
j∈L
|S(uj)|2−2j

+31 max
(√

λ log d,
√
d
)∑

j∈L
|S(uj)|2−2j +

∑
j∈M
|S(uj)|2−2j


≤ 408 max

(√
λ log d,

√
d
)
‖yM‖2 +

(
λ

5 + (1012 + 31) max
(√

λ log d,
√
d
))
‖yL‖2. J
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From the above three claims, we have

|yTAsy| ≤
(
λ+ 817 max

(√
λ log d,

√
d
))
‖yM‖2+(

4λ
5 + 7 · 1012 max

(√
λ log d,

√
d
))
‖yL‖2

≤
(
λ+ 8 · 1012 max

(√
λ log d,

√
d
))
‖y‖2.

Therefore, we have

|xTAsx| ≤ |yTAsy| ≤
(
λ+ 8 · 1012 max

(√
λ log d,

√
d
))
‖y‖2

≤ 4
(
λ+ 8 · 1012 max

(√
λ log d,

√
d
))
‖x‖2. J

We note that in the above proof, the multiplicative factor of 4 is a by-product of the
discretization of x. This can be avoided if we do not discretize x straightaway, but instead
“push” the discretization a little deeper into the proof. Indeed, we can see that the proof
of Claim 13 where we bound |yTM (A− (d/n)J)yM | by λ‖yM‖2 does not require yM to be a
discretized vector. This is how we are able to prevent the multiplicative factor loss to obtain
Theorem 2.
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