71 research outputs found

    The Abl and Arg non-receptor tyrosine kinases regulate different zones of stress fiber, focal adhesion, and contractile network localization in spreading fibroblasts

    Get PDF
    Directed cell migration requires precise spatial control of F-actin-based leading edge protrusion, focal adhesion (FA) dynamics, and actomyosin contractility. In spreading fibroblasts, the Abl family kinases, Abl and Arg, primarily localize to the nucleus and cell periphery, respectively. Here we provide evidence that Abl and Arg exert different spatial regulation on cellular contractile and adhesive structures. Loss of Abl function reduces FA, F-actin, and phosphorylated myosin light chain (pMLC) staining at the cell periphery, shifting the distribution of these elements more to the center of the cell than in wild-type (WT) and arg—/— cells. Conversely, loss of Arg function shifts the distribution of these contractile and adhesion elements more to the cell periphery relative to WT and abl—/— cells. Abl/Arg-dependent phosphorylation of p190RhoGAP (p190) promotes its binding to p120RasGAP (p120) to form a functional RhoA GTPase inhibitory complex, which attenuates RhoA activity and downstream pMLC and FA formation. p120 and p190 colocalize both in the central region and at the cell periphery in WT cells. This p120:p190 colocalization redistributes to a more peripheral distribution in abl—/— cells and to a more centralized distribution in arg—/— cells, and these altered distributions can be restored to WT patterns via re-expression of Abl or Arg, respectively. Thus, the altered p120:p190 distribution in the mutant cells correlates inversely with the redistribution in adhesions, actin, and pMLC staining in these cells. Our studies suggest that Abl and Arg exert different spatial regulation on actomyosin contractility and focal adhesions within cells

    The Abl and Arg non-receptor tyrosine kinases regulate different zones of stress fiber, focal adhesion, and contractile network localization in spreading fibroblasts

    Get PDF
    Directed cell migration requires precise spatial control of F-actin-based leading edge protrusion, focal adhesion (FA) dynamics, and actomyosin contractility. In spreading fibroblasts, the Abl family kinases, Abl and Arg, primarily localize to the nucleus and cell periphery, respectively. Here we provide evidence that Abl and Arg exert different spatial regulation on cellular contractile and adhesive structures. Loss of Abl function reduces FA, F-actin, and phosphorylated myosin light chain (pMLC) staining at the cell periphery, shifting the distribution of these elements more to the center of the cell than in wild-type (WT) and arg—/— cells. Conversely, loss of Arg function shifts the distribution of these contractile and adhesion elements more to the cell periphery relative to WT and abl—/— cells. Abl/Arg-dependent phosphorylation of p190RhoGAP (p190) promotes its binding to p120RasGAP (p120) to form a functional RhoA GTPase inhibitory complex, which attenuates RhoA activity and downstream pMLC and FA formation. p120 and p190 colocalize both in the central region and at the cell periphery in WT cells. This p120:p190 colocalization redistributes to a more peripheral distribution in abl—/— cells and to a more centralized distribution in arg—/— cells, and these altered distributions can be restored to WT patterns via re-expression of Abl or Arg, respectively. Thus, the altered p120:p190 distribution in the mutant cells correlates inversely with the redistribution in adhesions, actin, and pMLC staining in these cells. Our studies suggest that Abl and Arg exert different spatial regulation on actomyosin contractility and focal adhesions within cells

    Increased Dendrite Branching in AβPP/PS1 Mice and Elongation of Dendrite Arbors by Fasudil Administration

    Get PDF
    Amyloid-β (Aβ) overproduction and dendrite arbor atrophy are hallmarks of Alzheimer’s disease. The RhoA GTPase (Rho) signals through Rho kinase (ROCK) to control cytoskeletal dynamics and regulate neuron structure. Hyperactive Rho signaling destabilizes neurons leading to dendritic regression that can be rescued by genetic or pharmacological reduction of ROCK signaling. To understand what effect reduced ROCK signaling has on the dendrite arbors of mice that overproduce Aβ, we administered the ROCK inhibitor fasudil to AβPP/PS1 transgenic mice. We report that increased dendrite branching occurs in AβPP/PS1 mice and that fasudil promotes lengthening of the dendrite arbors of CA1 pyramidal neurons

    A peptide photoaffinity probe specific for the active conformation of the Abl tyrosine kinase

    Get PDF
    The design of sensors to monitor the activity state of specific protein kinases is challenging due to the complexity of eukaryotic kinomes. Here we describe a peptide-based photaffinity probe that specifically labels the active conformation of the Abl tyrosine kinase

    The Abl-related gene (Arg) requires its F-actin–microtubule cross-linking activity to regulate lamellipodial dynamics during fibroblast adhesion

    Get PDF
    Microtubules (MTs) help establish and maintain cell polarity by promoting actin-dependent membrane protrusion at the leading edge of the cell, but the molecular mechanisms that mediate cross-talk between actin and MTs during this process are unclear. We demonstrate that the Abl-related gene (Arg) nonreceptor tyrosine kinase is required for dynamic lamellipodial protrusions after adhesion to fibronectin. arg−/− fibroblasts exhibit reduced lamellipodial dynamics as compared with wild-type fibroblasts, and this defect can be rescued by reexpression of an Arg-yellow fluorescent protein fusion. We show that Arg can bind MTs with high affinity and cross-link filamentous actin (F-actin) bundles and MTs in vitro. MTs concentrate and insert into Arg-induced F-actin–rich cell protrusions. Arg requires both its F-actin–binding domains and its MT-binding domain to rescue the defects in lamellipodial dynamics of arg−/− fibroblasts. These findings demonstrate that Arg can mediate physical contact between F-actin and MTs at the cell periphery and that this cross-linking activity is required for Arg to regulate lamellipodial dynamics in fibroblasts

    Abelson Phosphorylation of CLASP2 Modulates its Association With Microtubules and Actin

    Get PDF
    The Abelson (Abl) non-receptor tyrosine kinase regulates the cytoskeleton during multiple stages of neural development, from neurulation, to the articulation of axons and dendrites, to synapse formation and maintenance. We previously showed that Abl is genetically linked to the microtubule (MT) plus end tracking protein (+TIP) CLASP in Drosophila. Here we show in vertebrate cells that Abl binds to CLASP and phosphorylates it in response to serum or PDGF stimulation. In vitro, Abl phosphorylates CLASP with a Km of 1.89 µM, indicating that CLASP is a bona fide substrate. Abl-phosphorylated tyrosine residues that we detect in CLASP by mass spectrometry lie within previously mapped F-actin and MT plus end interaction domains. Using purified proteins, we find that Abl phosphorylation modulates direct binding between purified CLASP2 with both MTs and actin. Consistent with these observations, Abl-induced phosphorylation of CLASP2 modulates its localization as well as the distribution of F-actin structures in spinal cord growth cones. Our data suggest that the functional relationship between Abl and CLASP2 is conserved and provides a means to control the CLASP2 association with the cytoskeleton. © 2014 The Authors. Cytoskeleton Published by Wiley Periodicals, Inc

    Synaptic Clustering of PSD-95 Is Regulated by c-Abl through Tyrosine Phosphorylation

    Get PDF
    The c-Abl tyrosine kinase is present in mouse brain synapses, but its precise synaptic function is unknown. We found that c-Abl levels in the rat hippocampus increase postnatally, with expression peaking at the first postnatal week. In 14 d in vitro hippocampal neuron cultures, c-Abl localizes primarily to the postsynaptic compartment, in which it colocalizes with the postsynaptic scaffold protein postsynaptic density protein-95 (PSD-95) in apposition to presynaptic markers. c-Abl associates with PSD-95, and chemical or genetic inhibition of c-Abl kinase activity reduces PSD-95 tyrosine phosphorylation, leading to reduced PSD-95 clustering and reduced synapses in treated neurons. c-Abl can phosphorylate PSD-95 on tyrosine 533, and mutation of this residue reduces the ability of PSD-95 to cluster at postsynaptic sites. Our results indicate that c-Abl regulates synapse formation by mediating tyrosine phosphorylation and clustering of PSD-95

    ABL1, Overexpressed in Hepatocellular Carcinomas, Regulates Expression of NOTCH1 and Promotes Development of Liver Tumors in Mice

    Get PDF
    Background & Aims We investigated whether ABL proto-oncogene 1, non-receptor tyrosine kinase (ABL1) is involved in development of hepatocellular carcinoma (HCC). Methods We analyzed clinical and gene expression data from The Cancer Genome Atlas. Albumin-Cre (HepWT) mice and mice with hepatocyte-specific disruption of Abl1 (HepAbl–/– mice) were given hydrodynamic injections of plasmids encoding the Sleeping Beauty transposase and transposons with the MET gene and a catenin β1 gene with an N-terminal truncation, which induces development of liver tumors. Some mice were then gavaged with the ABL1 inhibitor nilotinib or vehicle (control) daily for 4 weeks. We knocked down ABL1 with short hairpin RNAs in Hep3B and Huh7 HCC cells and analyzed their proliferation and growth as xenograft tumors in mice. We performed RNA sequencing and gene set enrichment analysis of tumors. We knocked down or overexpressed NOTCH1 and MYC in HCC cells and analyzed proliferation. We measured levels of phosphorylated ABL1, MYC, and NOTCH1 by immunohistochemical analysis of an HCC tissue microarray. Results HCC tissues had higher levels of ABL1 than non-tumor liver tissues, which correlated with shorter survival times of patients. HepWT mice with the MET and catenin β1 transposons developed liver tumors and survived a median 64 days; HepAbl–/– mice with these transposons developed tumors that were 50% smaller and survived a median 81 days. Knockdown of ABL1 in human HCC cells reduced proliferation, growth as xenograft tumors in mice, and expression of MYC, which reduced expression of NOTCH1. Knockdown of NOTCH1 or MYC in HCC cells significantly reduced cell growth. NOTCH1 or MYC overexpression in human HCC cells promoted proliferation and rescued the phenotype caused by ABL1 knockdown. The level of phosphorylated (activated) ABL1 correlated with levels of MYC and NOTCH1 in human HCC specimens. Nilotinib decreased expression of MYC and NOTCH1 in HCC cell lines, reduced the growth of xenograft tumors in mice, and slowed growth of liver tumors in mice with MET and catenin β1 transposons, reducing tumor levels of MYC and NOTCH1. Conclusions HCC samples have increased levels of ABL1 compared with nontumor liver tissues, and increased levels of ABL1 correlate with shorter survival times of patients. Loss or inhibition of ABL1 reduces proliferation of HCC cells and slows growth of liver tumors in mice. Inhibitors of ABL1 might be used for treatment of HCC

    Arg interacts with cortactin to promote adhesion-dependent cell edge protrusion

    Get PDF
    The molecular mechanisms by which the Abelson (Abl) or Abl-related gene (Arg) kinases interface with the actin polymerization machinery to promote cell edge protrusions during cell–matrix adhesion are unclear. In this study, we show that interactions between Arg and the Arp2/3 complex regulator cortactin are essential to mediate actin-based cell edge protrusion during fibroblast adhesion to fibronectin. Arg-deficient and cortactin knockdown fibroblasts exhibit similar defects in adhesion-dependent cell edge protrusion, which can be restored via reexpression of Arg and cortactin. Arg interacts with cortactin via both binding and catalytic events. The cortactin Src homology (SH) 3 domain binds to a Pro-rich motif in the Arg C terminus. Arg mediates adhesion-dependent phosphorylation of cortactin, creating an additional binding site for the Arg SH2 domain. Mutation of residues that mediate Arg–cortactin interactions abrogate the abilities of both proteins to support protrusions, and the Nck adapter, which binds phosphocortactin, is also required. These results demonstrate that interactions between Arg, cortactin, and Nck1 are critical to promote adhesion-dependent cell edge protrusions
    • …
    corecore