140 research outputs found

    Convergence properties of η→3π\eta\to 3\pi decays in chiral perturbation theory

    Full text link
    Theoretical efforts to describe and explain the η→3π\eta\to 3\pi decays reach far back in time. Even today, the convergence of the decay widths and some of the Dalitz plot parameters seems problematic in low energy QCD. In the framework of resummed CHPT, we explore the question of compatibility of experimental data with a reasonable convergence of a carefully defined chiral series, where NNLO remainders are assumed to be small. By treating the uncertainties in the higher orders statistically, we numerically generate a large set of theoretical predictions, which are then confronted with experimental information. In the case of the decay widths, the experimental values can be reconstructed for a reasonable range of the free parameters and thus no tension is observed, in spite of what some of the traditional calculations suggest. The Dalitz plot parameters aa and dd can be described very well too. When the parameters bb and α\alpha are concerned, we find a mild tension for the whole range of the free parameters, at less than 2σ\sigma C.L. This can be interpreted in two ways - either some of the higher order corrections are indeed unexpectedly large or there is a specific configuration of the remainders, which is, however, not completely improbable. Also, the distribution of the theoretical uncertainties is found to be significantly non-gaussian, so the consistency cannot be simply judged by the 1σ\sigma error bars.Comment: 57 pages, 5 figure

    G-Quadruplex Dynamics Contribute To Regulation Of Mitochondrial Gene Expression

    Get PDF
    Single-stranded DNA or RNA sequences rich in guanine (G) can adopt non-canonical structures known as G-quadruplexes (G4). Mitochondrial DNA (mtDNA) sequences that are predicted to form G4 are enriched on the heavy-strand and have been associated with formation of deletion breakpoints. Increasing evidence supports the ability of mtDNA to form G4 in cancer cells; however, the functional roles of G4 structures in regulating mitochondrial nucleic acid homeostasis in non-cancerous cells remain unclear. Here, we demonstrate by live cell imaging that the G4-ligand RHPS4 localizes primarily to mitochondria at low doses. We find that low doses of RHPS4 do not induce a nuclear DNA damage response but do cause an acute inhibition of mitochondrial transcript elongation, leading to respiratory complex depletion. We also observe that RHPS4 interferes with mtDNA levels or synthesis both in cells and isolated mitochondria. Importantly, a mtDNA variant that increases G4 stability and anti-parallel G4-forming character shows a stronger respiratory defect in response to RHPS4, supporting the conclusion that mitochondrial sensitivity to RHPS4 is G4-mediated. Taken together, our results indicate a direct role for G4 perturbation in mitochondrial genome replication, transcription processivity, and respiratory function in normal cells

    Aerosol optical hygroscopicity measurements during the 2010 CARES campaign

    Get PDF
    Measurements of the effect of water uptake on particulate light extinction or scattering made at two locations during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) study around Sacramento, CA are reported. The observed influence of water uptake, characterized through the dimensionless optical hygroscopicity parameter γ, is compared with calculations constrained by observed particle size distributions and size-dependent particle composition. A closure assessment has been carried out that allowed for determination of the average hygroscopic growth factors (GFs) at 85% relative humidity and the dimensionless hygroscopicity parameter κ for oxygenated organic aerosol (OA) and for supermicron particles (defined here as particles with aerodynamic diameters between 1 and 2.5 microns), yielding κ = 0.1–0.15 and 0.9–1.0, respectively. The derived range of oxygenated OA κ values are in line with previous observations. The relatively large values for supermicron particles is consistent with substantial contributions of sea-salt-containing particles in this size range. Analysis of time-dependent variations in the supermicron particle hygroscopicity suggest that atmospheric processing, specifically chloride displacement by nitrate and the accumulation of secondary organics on supermicron particles, can lead to substantial depression of the observed GF

    Top-k String Auto-Completion with Synonyms

    Get PDF
    Auto-completion is one of the most prominent features of modern information systems. The existing solutions of auto-completion provide the suggestions based on the beginning of the currently input character sequence (i.e. prefix). However, in many real applications, one entity often has synonyms or abbreviations. For example, "DBMS" is an abbreviation of "Database Management Systems". In this paper, we study a novel type of auto-completion by using synonyms and abbreviations. We propose three trie-based algorithms to solve the top-k auto-completion with synonyms; each one with different space and time complexity trade-offs. Experiments on large-scale datasets show that it is possible to support effective and efficient synonym-based retrieval of completions of a million strings with thousands of synonyms rules at about a microsecond per-completion, while taking small space overhead (i.e. 160-200 bytes per string).Peer reviewe

    Metagenes Associated with Survival in Non-Small Cell Lung Cancer

    Get PDF
    NSCLC (non-small cell lung cancer) comprises about 80% of all lung cancer cases worldwide. Surgery is most effective treatment for patients with early-stage disease. However, 30%–55% of these patients develop recurrence within 5 years. Therefore, markers that can be used to accurately classify early-stage NSCLC patients into different prognostic groups may be helpful in selecting patients who should receive specific therapies

    Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)

    Get PDF
    Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites – one within the Sacramento urban area and another about 40 km to the northeast in the foothills area – were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climate-related properties in freshly polluted and "aged" urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: (a) the scientific background and motivation for the study, (b) the operational and logistical information pertinent to the execution of the study, (c) an overview of key observations and initial findings from the aircraft and ground-based sampling platforms, and (d) a roadmap of planned data analyses and focused modeling efforts that will facilitate the integration of new knowledge into improved representations of key aerosol processes and properties in climate models.United States. Dept. of Energy. Atmospheric System Research Program (Contract DE-AC06-76RLO 1830)United States. National Oceanic and Atmospheric AdministrationUnited States. National Aeronautics and Space Administration. HQ Science Mission Directorate Radiation Sciences ProgramUnited States. National Aeronautics and Space Administration. CALIPSO ProgramUnited States. Dept. of Energy. Atmospheric Radiation Measurement Program (Interagency Agreement No. DE-AI02-05ER63985

    Rationale and design of the hip fracture accelerated surgical treatment and care track (hip attack) trial : A protocol for an international randomised controlled trial evaluating early surgery for hip fracture patients

    Get PDF
    Introduction Annually, millions of adults suffer hip fractures. The mortality rate post a hip fracture is 7%-10% at 30 days and 10%-20% at 90 days. Observational data suggest that early surgery can improve these outcomes in hip fracture patients. We designed a clinical trial - HIP fracture Accelerated surgical TreaTment And Care tracK (HIP ATTACK) to determine the effect of accelerated surgery compared with standard care on the 90-day risk of all-cause mortality and major perioperative complications. Methods and analysis HIP ATTACK is a multicentre, international, parallel group randomised controlled trial (RCT) that will include patients ≥45 years of age and diagnosed with a hip fracture from a low-energy mechanism requiring surgery. Patients are randomised to accelerated medical assessment and surgical repair (goal within 6 h) or standard care. The co-primary outcomes are (1) all-cause mortality and (2) a composite of major perioperative complications (ie, mortality and non-fatal myocardial infarction, pulmonary embolism, pneumonia, sepsis, stroke, and life-threatening and major bleeding) at 90 days after randomisation. All patients will be followed up for a period of 1 year. We will enrol 3000 patients. Ethics and dissemination All centres had ethics approval before randomising patients. Written informed consent is required for all patients before randomisation. HIP ATTACK is the first large international trial designed to examine whether accelerated surgery can improve outcomes in patients with a hip fracture. The dissemination plan includes publishing the results in a policy-influencing journal, conference presentations, engagement of influential medical organisations, and providing public awareness through multimedia resources. Trial registration number NCT02027896; Pre-results
    • …
    corecore