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Abstract

Non-small cell lung cancer (NSCLC) causes considerable mortality in the world. Owing to molecular biological
progress, treatments in adenocarcinoma have evolved revolutionarily while those in squamous lung cancer remain
unsatisfied. Recent studies revealed high-frequency alteration of Kelch-like ECH-associated protein 1/nuclear factor
erythroid 2-like factor 2 (Keap1/Nrf2) pathway within squamous lung cancer, attracting researchers to focus on this
particular pathway. In NSCLC patients, deregulated Nrf2 signal is recognized as a common feature at both DNA and
protein level. Emerging associations between Nrf2 and other pathways have been elucidated. MicroRNA was also
implicated in the regulation of Nrf2. Agents activating or antagonizing Nrf2 showed an effect in preclinical
researches, reflecting different effects of Nrf2 during tumor initiation and progression. Prognostic evaluation
demonstrated a negative impact of Nrf2 signal on NSCLC patients’ survival. Considering the importance of Nrf2
signal in NSCLC, further studies are required in the future.
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Background
Non-small cell lung cancer (NSCLC) remains to be the
leading cause of tumor-related mortality [1, 2]. Among
main pathological types of NSCLC, identification of epi-
dermal growth factor receptor (EGFR) mutation [3, 4],
echinoderm microtubule-associated protein-like anaplas-
tic lymphoma kinase (EML4-ALK) fusion [5, 6], and
other genetic alterations bring revolutionary improve-
ments to the treatment of advanced lung adenocarcin-
oma. Other genetic/epigenetic alterations, including long
non-coding RNAs HOTAIR [7] and GAS5 [8] and po-
tential oncogenes Notch1 [9], alpha-enolase [10], and
NLK [11] are also contributed to the progression of
NSCLC. Biomarker-guided strategy has been demon-
strated to improve chemotherapy response for NSCLC
patients [12]. However, conventional chemotherapy and
radiotherapy continue to be the standard regime for
squamous lung cancer patients who lose their chances
to surgery [13].
To better understand the genetic feature of squamous

cell lung cancer, The Cancer Genome Atlas (TCGA)

network attempted to unveil the genomic alterations in
this common pathological type through comprehensive
approaches [14]. Kelch-like ECH-associated protein 1
(Keap1)/nuclear factor erythroid 2-like factor 2 (Nrf2)/
Cullin3 pathway alterations occur in a third of squamous
cell lung cancer according to TCGA discoveries. An-
other study conducted by Kim et al. indicated that the
proportion in East Asian population was as high as
39.4 % [15]. Keap1 negatively regulates intracellular Nrf2
protein abundance and represses the activation of Nrf2
signal [16]. Gene knockout mice model and clinical
studies proved that Nrf2 signal is crucial in the initiation
and progression of lung cancer. Nrf2 signal exerts a fa-
vorable chemopreventive influence on mice teratolo-
genic tests by promoting carcinogen elimination,
suggesting its anti-initiation effects [17]. Clinical obser-
vations also suggested a correlation between enhanced
Nrf2 signal activities and worse treatment outcomes
[18]. Expressions of various cytoprotective genes are up-
regulated when Nrf2 signal activates to increase pro-
survival potential under endogenous or exogenous stress
stimulation [19]. These genes are involved in multiple
biological processes including glutathione synthesis, pur-
ine denovo synthesis, glycometabolism, drug-pump sys-
tem, and serine synthesis [20–23]. Furthermore, there
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are crosstalks between Nrf2 and other oncogenic signal
pathways such as phosphatidylinositol 3-kinase (PI3K)
[24], Kirsten retrovirus-associated DNA sequence (K-
ras) [25], and Notch [26]. This minireview will mainly
focus on emerging relevance between Nrf2 signal and
NSCLC to give a glimpse of what have been achieved in
this realm.
Nrf2 and Keap1 expression in NSCLC
Tobacco exposure is considered to be the principal
cause of non-small cell lung cancer [27]. As a major car-
cinogen for squamous cell lung cancer, cigarette expos-
ure can activate the oxidant stress response [28]. Sekine
et al. analyzed gene expression of H292 (human lung
mucoepidermoid cancer cell) and found that after expos-
ure to total particular matter (TPM) of tobacco leaf,
Nrf2-mediated oxidative stress response was significantly
activated [29]. Hu et al. examined Nrf2 sequences of 103
patients with NSCLC and discovered that the Nrf2
mutation rate in ever-smokers was significantly higher
than that in never-smokers [30]. In accordance with Hu,
Sasaki et al. sequenced Nrf2 in 262 surgically resected
lung tumors and confirmed that Nrf2 mutation were
more common in squamous lung cancer and smokers
[31]. Genomic analysis also showed approximately 30 %
of squamous lung cancer harbor alterations within the
Keap1/Nrf2 pathway [14, 15].
On the other hand, Singh et al. demonstrated that

deletion of Keap1 locus (19p13.2) recurrently occurred
in NSCLC, which might increase the nuclear accumula-
tion of Nrf2 and reduce tumor’s sensitivity to chemo-
therapy [32]. In addition, Muscarella et al. discovered
that 22 in 47 NSCLC exhibited a hypermethylation of
CpG in Keap1 promoter [33].
At protein level, several studies have shown that Nrf2

was frequently deregulated in NSCLC tumor tissues
[18, 34]. Solis et al. demonstrated that nuclear Nrf2
abundance was higher in squamous cell lung cancer
than in adenocarcinoma [35]. Keap1 absent or low in
abundance were more common in adenocarcinoma.
And it was indicated that nuclear Nrf2 abundance asso-
ciated with worse progress-free survival in squamous
lung cancer patients treated by platinum-based adju-
vant regimen.
Increasing numbers of microarray assays have been

conducted to profile NSCLC genomic features, which
provide an opportunity to link novel target genes with
clinicopathological characteristics. Cescon et al. reana-
lyzed squamous lung cancer’s expression profile of
TCGA and two other datasets to identify a gene list
associated with Nrf2 activation, and eventually separated
squamous lung cancer into activated and wild-type
groups [36]. This molecular signature classification was
reproducible and could help predict survival within cer-
tain studies to some extent.

Interactions between Keap1 and Nrf2
Keap1/Nrf2 pathway modulates redox homeostasis in
mammal cells [37]. Nrf2 contains a basic-leucine zipper
structure and belongs to the Cap’n’Collar transcription
factors [38]. By linking its ETGE and DLG motifs with
dimerized Kelch domain, a model called “hinge and
latch” is fixed to the actin cytoskeleton [39]. As a nega-
tive regulator of Nrf2, Keap1 assembles Cullin3 to form
Cullin-E3 ligase complex which degrades Nrf2 protein
via ubiquitin-proteasome route [34]. When electrophiles
and xenobiotics appear intracellularly, bounds between
Nrf2 and Keap1 are counteracted [40]. Nrf2 protein then
evades degradation and translocates from cytoplasm to
nucleus under the direction of a bipartite nuclear
localization signal (NLS) [41, 42], thereby dimerizing
with c-Jun [43] and small Maf [44] before binding to the
antioxidant response element (ARE) [45]. It has been
demonstrated that amino residuals on Keap1 protein dir-
ectly react with electrophiles and xenobiotics to perceive
intracellular stress condition [46–49]. Table 1 summa-
rized Keap1 amino residuals involved in the activation of
Nrf2. Figure 1 illustrated tertiary structure of Broad
complex, Tramtrack, and Bric à brac (BTB) domain of
Keap1.
Nrf2 downstream genes generally contain a conserved

sequence in the promoter region, which binds with Neh4
and Neh5 domain of Nrf2 [50]. ARE exists in a variety of
intracellular antioxidant genes such as glutamate-cysteine
ligase modifier subunit (Gclm), NAD(P)H quinone oxido-
reductase 1 (Nqo1), glutathione S-transferase (Gst), heme
oxygenase-1 (Ho-1) [51]. These genes encode phase II
metabolic enzymes which mainly participate in the
defense of drugs and reactive oxygen species (ROS) [52].
Gclm is a rate-limiting enzyme involved in the synthesis
of glutathione [38]. Gst is best known for its ability to
catalyze the conjugation of GSH with xenobiotics sub-
strate, which can help in detoxification. Nqo1 catalyzes
the process of NAD(P)H dehydrogenation to NAD(P)+.
After the dehydrogenation, a quinone turns into a hydro-
quinone which could be easily eliminated in water-soluble
form [53]. Different from the above three genes, Ho-1
plays an important role in attenuating inflammatory re-
sponse and preventing cell apoptosis. Ho-1 could bind to
gene promoter as well as directly interact with inflamma-
tion factor Stat3 besides its heme degradation function
[54]. Dey et al. demonstrated that Ho-1 prevented anoikis
(a special form of apoptosis) and promote metastasis of
colorectal fibrosarcoma cells [55]. However, Ho-1 exhib-
ited an unusual antitumor effect in mucoepidermoid lung
carcinoma by down-regulation of matrix metalloprotein-
ase [56, 57]. In addition, Multidrug resistance-associated



Table 1 Summary of Keap1 amino residuals involved in the
activation of Nrf2 signal

Author Interests amino
residues

Nrf2 signal
activator

2003 Zhang
et al. [46]

Cys151, Cys273, Cys288 Sulforaphane,
t-BHQ

2002 Dinkova-Kostova et al.
[47]

Cys257, Cys273, Cys288,
Cys297, Cys613

Dexamethasone,
sulforaphane

2010 McMahon et al. [49] Cys288, His225, Cys226,
Cys613, His129, Lys131,
Arg135, Lys150, His154,
Cys151

NO, Zn2+,
alkenals

2014 Wang et al. [48] Cys151 Oxaliplatin
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protein 1 (MRP1) contains two potential AREs which may
interact with Nrf2 when its activator tertiary butylhydro-
quinone (t-BHQ) is administrated to small cell lung can-
cer cell line H69 [58].
Recently, the involvement of Nrf2 has also been recog-

nized in mitochondrial physiology [59]. Through producing
more substrates (NADH and FADH2) for respiration and
augmenting aliphatic acid oxidation, Nrf2 influences mito-
chondrial activity [60]. Keap1/Nrf2 signal regulated both
mitochondrial and cytoplasmic ROS production through
NADPH oxidizing in cortical neurons and glial cells [61].
Besides, Nrf2 affected other physiological characteristics of
mitochondrion including membrane potential [62], mem-
brane integrity [63], and biogenesis [64].
Emerging gene crosstalks with Nrf2 signal
Classical oncogenic pathways such as PI3K and K-ras
have been reported to have an impact on Nrf2 function,
as well as some other well-known transcription factors
such as Bach1, estrogen receptor(ER)-α, NF-kappa B,
and HIF-1α.
Fig. 1 Corresponding amino residuals within Keap1 BTB domain on tertiary
showed its serial number on peptide chain. Simulation of tertiary structure
[110]. PyMOL Molecular Graphics System was used to present this domain
Nrf2 and PI3K
PI3K signal pathway is a classical oncogenic gene as it en-
hances tumor cell growth, viability, and metabolism [65].
PI3K inhibitor NVP-BKM120 reduced expression of Nrf2
in squamous lung cancer cells [24]. However, the mechan-
ism involved has not been elucidated. Activated PI3K signal
increased Nrf2 accumulation in nuclear [21], thereby en-
hancing multiple biological processes including de novo
purine nucleotides synthesis, glutamine metabolism, and
pentose phosphate pathway. Among these processes,
enzymes involved in the pentose phosphate pathway pro-
vided substrates for purine synthesis and glutamine metab-
olism to promote cell proliferation and cytoprotection.

Nrf2 and K-ras
K-ras gene mutations repeatedly occur at a proportion
of 20~30 % in NSCLC [66]. Mutated K-ras proteins
cause aberrant activation of downstream signal and con-
fer to cancer cells’ resistance and survival. Lung adeno-
carcinoma patients harboring K-ras mutation tended to
be chemoresistant and had dismal prognosis [67, 68].
Tao [25] and DeNicola et al. [69] identified that constitu-
tive expression of K-ras mutation G12D enhanced Nrf2
mRNA levels. Promoter analysis showed that a TPA
response element (TRE) located in exon1 of Nrf2 was
activated by K-ras. Remarkably, Satoh et al. modeled the
process of lung carcinogenesis with urethane and found
that Nrf2−/− mice were rarely associated with K-ras mu-
tation [17]. They also established Nrf2 prevented tumor
initiation but promoted progression in different phases
during carcinogenesis.

Nrf2 and Bach1
Bach1, a nuclear transcription factor, was reported to
co-localize with Nrf2 in nucleus in HepG2 cells and at-
tenuate the binding between Nrf2 and ARE [70]. This
structure. Amino residues marked in different colors with arrows
was constructed using PDB file of 4CXI produced by Cleasby et al.
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negative regulation of Bach1 resulted in the balance of
redox within cells. In earlier research of Sun et al., evi-
dences revealed that the repression was mediated by
Ho-1 and its substrates heme [71]. Reichard et al. found
that during arsenite-mediated oxidative stress, Bach1 in-
activation allowed Nrf2 binding to Ho-1 promoter and
elevating Ho-1 mRNA [72].

Nrf2 and ER-α
Estrogen receptor (ER) is tightly related to the develop-
ment and biological behavior of multiple cancers. Re-
searches suggested that ER-α repressed the activity of
Nrf2 and the transcription of phase II metabolic en-
zymes [73, 74]. Further exploration revealed that this
repression resulted from the interaction between ER-α
and Nrf2 and required the coordination of ER ligand 17-
estradiol [73].

Nrf2 and Sirt1
Acetylation of amino residuals typically stabilized Nrf2
proteins and prevented it from degradation [75]. Sirt1 is
an enzyme primarily engaged in catalyzing protein dea-
cetylation in nucleus [76]. Kawai et al. noticed that
CREB-binding protein (CBP) mediated acetylation of
Nrf2 and gave rise to its target gene mRNA, while Sirt1
deacetylated Nrf2 and vice versa [77]. By constructing
mutations of pK588Q and pK591Q, they unveiled an
indispensible role of lysine residuals on Nrf2 in the
process of Sirt1 regulation.

Nrf2 and NF-kappa B
Inflammatory response activation always occurs with
elevation of ROS [78]. As a classical pro-inflammatory
factor, NF-kappa B has been implicated in the regulation
of Nrf2. Liu et al. found that NF-kappa B subunit p65
specifically deprived CBP from Nrf2, leading to inhib-
ition of Nrf2 and its downstream genes [79]. Oppositely,
Rushworth et al. recently reported that NF-kappa B sub-
units p50 and p65 promoted transcription of Nrf2 by
binding to a kappa B site in acute myeloid leukemia, and
conferred to resistance to cytotoxic treatment [80].
These findings suggested distinct patterns of crosstalk
between NF-kappa B and Nrf2 in different cell contexts.

Nrf2 and HIF-1α
HIF-1α is a key transcription factor mainly monitoring
oxygen homeostasis. Under hypoxic condition, HIF-1α es-
capes from degradation mediated by prolyl hydroxylase
domain proteins and augments downstream gene expres-
sion [81]. In human endothelial cells, Loboda et al. discov-
ered that induction of HIF-1α attenuated Nrf2-dependent
expression of IL-8 and Ho-1 [82]. Thereafter, investigator
in the realm of colon cancer has identified Nrf2 as an im-
portant factor in activating HIF-1α. Kim et al. found that
stably inhibiting Nrf2 signal in colon cancer cell led to at-
tenuated HIF-1α activation, subsequently causing a reduc-
tion of blood vessel formation and vascular endothelial
growth factor expression [83].
Nrf2 and Notch1
Notch family consists of a series of intracellular signal
mediators with highly conserved domain [84, 85]. It was
reported that Notch1 and Notch3 expressions were
closely associated with NSCLC patients’ progression and
prognosis [86]. Wakabayashi et al. found Notch signal
activation upregulated Nrf2 and cytoprotective genes in
mouse liver [87]. They also demonstrated that Notch
intracellular domain (NICD) assembled to the Rbpjκ site
of Nrf2 promoter, leading to the activation of Nrf2 sig-
nal. Inversely, Nrf2 activation induced by ROS enhanced
the Notch pathway, thus promoting airway basal stem
cells’ self-renewal [88]. Paul et al. identified a putative
ARE within Notch1 promoter [88]. More recently, Zhao
et al. discovered that ionizing radiation exposure
induced Nrf2 activation and knockdown of Nrf2 attenu-
ated Notch1 expression following ionizing radiation [89].
The evidences above indicated a mutual promotion
model for the crosstalk of Nrf2 and Notch1.
MicroRNAs associated with Nrf2
MicroRNA-related mechanisms play a critical role in the
regulation of Nrf2. Several studies have identified micro-
RNAs which directly decreased Nrf2 mRNA in breast and
esophageal cancer. miR-28 targeted 3′-untranslated region
(UTR) of Nrf2 to exhibit a significant silencing effect in
breast cancer [90]. In addition, by screening reporter-
coupled microRNA library, Yamamoto et al. discovered
that miR-507, miR-634, miR-450a, and miR-129-a directly
targeted Nrf2 to mediate mRNA degradation in esopha-
geal cancer [91]. Besides, miR-200a was reported to asso-
ciate with and trim Keap1 mRNA and thus increased the
levels of Nrf2 protein and downstream transcripts [92].
Nrf2 also modulates microRNAs to mediate pro-

survival processes. In lung cancer, Singh et al. further
examined Nrf2’s effects on the pentose phosphate path-
way and tricarboxylic acid cycle, discovering that activa-
tion of Nrf2 reduced miR-1 and miR-206 expression and
resulted in elevation of metabolic gene expression in the
pathway [93]. Chemotherapy induces apoptosis in not
only cancer cells but also normal tissue. Joo et al. re-
ported that oltipraz, a synthetic Nrf2 activator, increased
miR-125b in the kidney of mice [94]. miR-125b subse-
quently inhibited the activity of aryl hydrocarbon recep-
tor repressor, leading to augmentation of Mdm2 and
reduction of p53, thus to protect the kidney against
acute injury caused by cisplatin. Table 2 gives a summary
of microRNAs associated with Nrf2 signal.



Table 2 Lists of micRNAs associated with Nrf2 signal

MicroRNA ID Target region/biological process involved Organ types

Increased by Nrf2 miR-125b [94] Inhibit AhR repressor Kidney, liver

Decreased by Nrf2 miR-1, miR-206 [93] Pentose phosphate pathway, tricarboxylic acid cycle,
glucose metabolism

Lung

Increase Nrf2 miR-200a [92] Keap1 mRNA’s 3′-UTR Breast, liver

Decrease Nrf2 miR-28 [90] Nrf2 mRNA’s 3′-UTR Breast

miR-507, miR-634, miR-450a, miR-129-5a [91] Nrf2 mRNA’s 3′-UTR Esophageal

UTR untranslated regions
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Typical activators and antagonists of Nrf2 signal
Activators of Nrf2 signal have long been studied for their
effects in inducing detoxication and cytoprotective genes,
generating a chemopreventive effect towards carcinogen-
esis. Among thousands of newly synthetic or extracted
compounds, typical activators of Nrf2 commonly derive
from plants such as broccoli [95] and turmeric [96].
Sulforaphane, which is extracted from broccoli, is one

of the most potent activators of Nrf2 signal. Hong et al.
demonstrated that sulforaphane modified Kelch domain
of Keap1 protein [97]. Thiols from Kelch domain react
with isothiocyanate on sulforaphane to form a thionoacyl
adduct, releasing Nrf2 protein and inducing phase II
metabolic enzymes. Kalpana et al. tested the ability of sul-
foraphane in inhibiting benzo(a)pyrene (B(a)P)-initiated
lung carcinogenesis in mouse and confirmed its impact on
Nrf2 signal pathway [98]. Intriguingly, sulforaphane could
induce apoptosis through ROS-mediated mitochondrial
pathway [99].
Curcumin, which is extracted from an Indian spice

named turmeric, is also a classical Nrf2 signal activator.
A series of studies emphasized its radiation-protective or
chemoprevention role in normal tissues and indicated
the protective effects are mediated by activating Nrf2
signal [96, 100]. Intriguingly, curcumin yet can act as a
radiotherapy/chemotherapy sensitizer in colorectal can-
cer [101, 102], prostate cancer [103], and ovarian cancer
[104]. It is remarkable that curcumin also has an inhibi-
tory effect on other oncogenic signal pathways such as
NF-kappa B [104], Notch1 [105], and mitochondrial
pathway [106], therefore providing more rationale for its
clinical practice in the future.
Oltipraz, known as a dithiolthione substitute capable

of inducing phase II enzymes, exhibited a chemopreven-
tion effect [107]. Lida et al. demonstrated that Nrf2 was
responsible for oltipraz’s chemoprevention effect against
bladder carcinogenesis [108]. Sharma et al. proved that
inhalation of oltipraz as spray inhibited B(a)P-initiated
lung adenocarcinoma in mouse [109].
CDDO-Im is another powerful activator of Nrf2 signal.

It is a synthetic oleanolic triterpenoids that can cova-
lently conjugate with electron-withdrawing groups.
Cleasby et al. identified CDDO-Im covalently formed
complex with Keap1 on BTB domain [110]. This com-
plex inhibited the binding of Keap1 BTB domain and
Cullin3 to activate Nrf2 signal. By applying microarray
to Keap1-knockout and CDDO-Im disposed mice, Yates
et al. demonstrated that both methods exerted a com-
prehensive activation of Nrf2-regulated gene [111]. In
vivo evidence suggested an oral dose of 1~100 μM/kg
CDDO-Im protected hepatic cells against aflatoxin-
induced tumorigenesis [112].
As to antagonists of Nrf2 signal, limited compounds

were identified to exhibit obvious inhibitory effect. Brusa-
tol is a quassinoid firstly reported to have an antitumor ef-
fect for leukemia [113]. Ren et al. found that brusatol
enhanced ubiquitination and degradation of Nrf2 and re-
duced its protein level [114]. Pretreatment with brusatol
increased cancer cells’ sensitivity to chemotherapy. In
mouse xenograft model, brusatol combined with cisplatin
significantly reduced expressions of Nrf2, Nqo1, and Ki-67
indexes. Research also suggested that the inhibitory effect
caused by brusatol was a transient process which hap-
pened within 12 h after its administration [115]. Posttran-
scriptional regulation was recognized as the main
inhibition mechanism.

Prognostic value of Nrf2 signal in NSCLC
As introduced above, Nrf2 and its downstream tran-
scripts protect cells against exogenous stimuli and oxi-
dant stress, thus increasing lung cancer cells’ resistant to
antineoplastic treatment. Inoue et al. examined the
expression of Nrf2 by immunohistochemical in 109
NSCLC specimens and discovered that higher nuclear
accumulation of Nrf2 correlated with worse lung cancer-
specific survival [116]. Solis et al. further explored nu-
clear Nrf2 and cytoplasm Keap1 immunohistochemical
expression in 304 NSCLC patients and reported that nu-
clear Nrf2 expression associated with worse progress-
free survival in squamous cell cancer patients who
underwent adjuvant treatment [35]. Yang et al. analyzed
Nrf2 abundance of 60 NSCLC patients and compared
platinum-based treatments response between patients
with <75 % positive stain and that with 75–100 %
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positive stain [18]. It was discovered that the former
group achieved a higher response rate than the latter
group, suggesting that Nrf2 expression might be a useful
index to predict the efficacy of platinum-based
treatments.
As the main negative regulator of Nrf2, Keap1 ac-

tivity also correlated with NSCLC survival. Muscarella
et al. discovered that NSCLC patients harboring both
Keap1 somatic mutation and methylation had worse
progress-free survival compared with other patients
[33]. Similarly, Takahashi et al. found that Keap1 mu-
tations conferred to the increase of Nrf2 abundance
in NSCLC patients and worse progress-free and over-
all survival [117].
With regard to Ho-1, one of Nrf2 downstream tran-

scripts, correlation between its expression and sur-
vival has not yet been elucidated. Degese et al.
pointed out that Ho-1 expression correlated with
advanced stage and lymphatic metastasis, but no asso-
ciations with patients’ overall survival were found
[118]. In study of Tsai et al., Ho-1 expression in 70
NSCLC tumor tissues were assessed with matched
normal tissues [119]. The results indicated that
patients with a Ho-1 mRNA rise (defined as ratio be-
tween tumor and normal bigger than 1) exhibited
worse overall survival and higher metastasis rate.
Another important transcript of Nrf2 signal, Nqo1, en-

coding a flavoprotein previously named DT-diaphorase
Fig. 2 Schematic illustration of pathways associated with Nrf2 signal. Keap1
through Kelch domain, leading to the degradation of Nrf2. In the absence
ARE in the promoter region of target gene, leading to the transcriptional a
regulation. However, Nrf2 activity could be modified by acetylation and de
be inhibited by Bach1 through competitively binding with ARE. Mutant K-r
Several microRNAs have been shown to inhibit Nrf2 or Keap1. BTB Broad co
ER estrogen receptor, Ub ubiquitin, CBP CREB-binding protein
and mainly acting as a catalyzer of oxidation of
NA(D)PH, predicted NSCLC survival at different levels.
Early before, Pamela et al. related DT-diaphorase expres-
sion and activity in NSCLC tumors to smoking status
[120]. Then, Kolesar et al. validated that expressions of
Nqo1 in lung tumors were higher than the matched nor-
mal lung tissues [121]. Moreover, they also evaluated
Nqo1 single nucleotide polymorphism (SNP) by restric-
tion fragment length polymorphism (RFLP), and found
that homozygous SNP genotype was associated with
worse overall survival [122]. Recently, Li et al. also dem-
onstrated that patients with positive expression of Nqo1
stain in tumors have shorter overall survival [123].
Conclusions
Although Nrf2 has been newly identified as oncogenic
signal pathway, it has not been proved to be a driver
gene in NSCLC. Nrf2 signal is inextricably linked to
classical oncogenic pathways (Fig. 2). MicroRNA
played an important role in regulation of Nrf2 signal.
Both activators and antagonists towards Nrf2 have
been applied in preclinical researches, reflecting its
two-side effect during lung tumor initiation and pro-
gression. Yet, the effect requires more evidences
before putting into clinical practice. Nrf2 signal is
characterized as a potential biomarker in NSCLC pro-
gress and prognosis.
assembles Cullin 3 and binds to the ETGE and DLG sites of Nrf2
of Keap1, Nrf2 translocates from cytoplasm to nuclear to bind with
ctivation of genes related to inflammation, detoxication, and metabolic
acetylation through NF-kappa B or ER pathway. Nrf2 activity could also
as promotes Nrf2 transcriptional through TPA responsive element.
mplex, Tramtrack, and Bric à brac, ARE antioxidant responsive element,
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