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Abstract. Auto-completion is one of the most prominent features of modern in-
formation systems. The existing solutions of auto-completion provide the sug-
gestions based on the beginning of the currently input character sequence (i.e.
prefix). However, in many real applications, one entity often has synonyms or
abbreviations. For example, “DBMS” is an abbreviation of “Database Man-
agement Systems”. In this paper, we study a novel type of auto-completion
by using synonyms and abbreviations. We propose three trie-based algorithms to
solve the top-k auto-completion with synonyms; each one with different space
and time complexity trade-offs. Experiments on large-scale datasets show that it
is possible to support effective and efficient synonym-based retrieval of comple-
tions of a million strings with thousands of synonyms rules at about a microsec-
ond per-completion, while taking small space overhead (i.e. 160-200 bytes per
string). The implementation of algorithms is publicly available at http://udbms.
cs.helsinki.fi/?projects/autocompletion/download.

1 Introduction

Keyword searching is a ubiquitous activity performed by millions of users daily. How-
ever, cognitively formulating and physically typing search queries is a time-consuming
and error-prone process [3,6] . In response, keyword search engines have widely adopted
auto-completion as a means of reducing the efforts required to submit a query. As users
enter their query into the search box, auto-completion suggests possible queries the user
may have in mind.

The existing solutions of auto-completion provide the suggestions based on the be-
ginning of the currently input character sequence (i.e. prefix). Although this approach
provides satisfactory auto-completion in many cases, it is far from optimal since it fails
to take into account the semantic of users’ input characters. There are many practi-
cal applications where syntactically different strings can represent the same real-world
object [10]. For example, “Bill” is a short form of “William” and “Database Manage-
ment Systems” can be abbreviated as “DBMS”. These equivalence information sug-
gests semantically similar strings that may have been missed by simple prefix based ap-
proaches. For instance, based on the DBLP dataset, when a user enters “Andy Pa” in the
search box (see Fig. 1), the system should suggest “Andrew Palvo”, because there is no
record with the prefix “Andy Pa” and “Andy” is a nickname of “Andrew”. Similarly,
on an E-commerce site, a user may type part of an abbreviation of a product name be-
cause she does not know the full name stored in a database. In a gene/protein database,
one of the major obstacles that hinder the effective use is term variation [13], including
acronym variation (e.g. “IL-2” and “interleukin-2”), and term abbreviation (e.g. “Ah
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Andy Pa

Andrew Pavlo
Andrew Parker
Andrew Packard

IL2

Interleukin-2

Interleukin-2 biological activity
Interleukin-2 and cancer

Fig. 1: Auto-completion with synonyms.

receptor” and “Ah dioxin receptor”). Therefore, this calls for auto-completion with
synonyms to improve its usability and effectiveness. For brevity we use “synonym” to
describe any kind of equivalent pairs which may include synonym, acronym, nickname,
abbreviation, variation and other equivalent expressions.

Often, when only a few characters of the lookup string have been entered, there
are too many completions for auto completion to be useful. We thus consider a top-
k synonym-based auto-completion strategy that provides the suggestion for the only
top-k results according to predefined ranking scores and synonym sets. Given a large
set of strings, an auto-completion system needs to be speedy enough to keep up with
the user’s key strokes. Meanwhile, we would like to fit all strings in the limited main
memory. Hence, we need a both time-efficient and space-efficient data structure that
enables us to return top-k completions without checking all the data in the synonyms
set and the string collection.

In this paper, we propose three data structures to support efficient top-k completion
queries with synonyms for different space and time complexity trade-offs:
(i) Twin tries (TT): Two tries are constructed to present strings and synonym rules re-
spectively in order to minimize the space occupancy. Each trie is a compact data struc-
ture, where the children of each node are ordered by the highest score among their re-
spective descendants. Applicable synonym rules are indicated by pointers between two
tries. An efficient top-k algorithm is developed to search both tries to find the synonym
rules.
(ii) Expansion trie (ET): A fast lookup-optimized solution by integrating synonym rules
with the corresponding strings. Unlike TT, ET uses a single expended trie to represent
both synonym and string rules. Therefore, by efficiently traversing this trie, ET is faster
than TT to provide top-k completions. Meanwhile ET often takes larger space overhead
than TT, because ET needs to expand the strings with their applicable rules.
(iii) Hybrid tries (HT): An optimized structure to strike a good balance between space
and time cost for TT and ET. We find a balance between lookup speed and space cost
by judiciously selecting part of synonym rules to expand the strings. We show that
given a predefined space constraint, the optimal selection of synonym rules is NP-hard,
which can be reduced to a 0/1 knapsack problem with item interactions. We provide an
empirically efficient heuristic algorithm by extending the branch and bound algorithm.

Large scale evaluation of search queries on three real datasets demonstrate the ef-
fectiveness of the proposed approaches. For example, on the US postal address dataset
with 1M strings, the twin tries achieve a size of 160 bytes per string, which requires
an average of only 5ms to compute the top-10 completion on a simulated workload. In
comparison, the expansion trie reduces the completion time to 0.1ms, but increases the
size to 200 bytes per string. The hybrid tries have a balanced performance, by achieving
1-2ms per query, with the space overhead of 172 bytes per string. The implementation
is available at http://udbms.cs.helsinki.fi/?projects/autocompletion/download.



2 Related work

There is a plethora of literature on query auto-completion, especially in the field of
information retrieval. We report here the results closest to our work. Readers may refer
to a recent survey [2] for more comprehensive review.

Auto-completion with prefix matching can be easily implemented with a trie. There-
fore, it is straightforward to extend trie to support top-k prefix matching. Li et al. [9]
precompute and materialize the top-k completion of each possible word prefix and
store them with each internal node of a trie. This requires a predetrmined k. Surajit
et al. [3] provided solutions for error-tolerating auto-completion based on edit distance
constraints, which during the lookup, maintains an error variable while searching for
all possible candidate nodes. The collection of candidate strings are fetched by gath-
ering strings stored under all leaf nodes under all candidates nodes. Xiao et al. [14]
further extended the approach, by proposing a novel neighborhood generation-based al-
gorithm, which can achieve up to two orders of magnitude speedup over existing meth-
ods for the error-tolerant query auto-completion problem. These solutions, however, are
based on string similarity, which does not expose the semantic relations between words.
For example, “iPod” and “iPad” have an edit distance only 1, but they should not be
considered as the same word. In contrast, the edit distance between “DASFAA” and
“International Conference on Database Systems for Advanced Applications” is
big, but they refer to the same conference.

In [5], Hyvonen et al. proposed semantic-based auto-completion, which can include
synonym-based, context-based and multilingual auto-completion. Unfortunately, this
paper only mentions the concept of semantic-based auto-completion, but no algorithms
are proposed. In this paper, we make the technical contribution by proposing space and
time efficient algorithms to explore the synonym relations for top-k auto-completion.

Finally, synonym pairs can be obtained in many ways, such as existing dictionar-
ies and synonyms mining algorithms [12]. Recently, Lu et al. [10] studied how to use
the synonyms to improve the effectiveness of table joins. In this paper, with differ-
ent research theme, we strike to use the synonyms to provide meaningful top-k auto-
completion.

3 Preliminaries and problem description

In this section, we describe some of the data structures and primitives used in this paper
and define our research problem.
Dictionary and synonym rule sets. Dictionary is a scored string set D in forms of
pairs (s, r) where s ∈Σ∗ is a string drawn from an alphabetΣ and r is an integer score.
A synonym rule set R is a set of synonym pair. Let R denote a collection of synonym
rules, i.e., R = {r : lhs→ rhs}. A rule can be applied to s if lhs is a substring of s; the
result of applying the rule is the string s′ obtained by replacing the substring matching
lhs with rhs. Given a string p, we say a replaced string p′ from p, which is obtained
from some non-overlapping substrings of p by applying the rules to generate new string
p′. We can apply any number of synonym rules one after another. However, a token
that is generated as a result of production application cannot participate in a subsequent
production.



Problem Description. Given a dictionary of strings and a collection of synonym rules,
the goal is to suggest the top k strings with the highest scores with considerations of
synonym pairs. Formally, we define the problem of top-k completion with synonyms as
follows.

Problem 1 (Top-k completion with synonyms). Given a dictionary string p ∈ Σ∗, an
integer k, and a synonym set R, a top-k completion query in the scored dictionary
string set D returns the k highest-scored pairs in Dp = {s ∈ D | p is a prefix of s, or
there exists a replaced string p’ of p using R, such that p′ is a prefix of s.} ut

Example 1. See Figure 1. Given three dictionary strings D including “Andrew Pavlo”,
“Andrew Parker” and “Andrew Packard” and one synonym rule R = {“Andy”→
“Andrew”}. If a user enters “Andy Pa”. Then all three strings are returned as top-3
completions. Note that none of results can be returned based on the traditional prefix-
based auto-completion. ut

4 Twin tries (TT)

A trie, or radix tree or prefix tree, is a tree data structure that encodes a set of strings,
represented by concatenating the characters of the edges along the path from the root
node to each corresponding leaf. All the descendants of a node have a common prefix
of the string associated with that node, and the root is associated with the empty string.
To encode the score and support top-k completions, we assign to each leaf node the
score of the string it represents, while each intermediate node holds the maximum score
among its descendants. We employ two tries, named dictionary trie (TD) and rule trie
(TR), which hold all dictionary strings and the synonym rules, respectively. Moreover,
we introduce synonym links, which are edges from TR and pointing to corresponding
nodes in TD. To support top-k lookups, each synonym link is assigned with an integer
offset, denoted by link.delta, which equals to the length of rule.lhs minus length of
rule.rhs. An example of the mentioned structure can be found in Fig. 2. Algorithm 1
gives the method for building TT.

We introduce a heuristic algorithm (see Alg. 2) to find the best completion results
that extends the search string. Specifically, starting from the root node, we iteratively
search in the dictionary trie for any matching prefixes of search string. For the un-
matched part, we look up in the rule trie for any possible synonym rules. If there are
multiple link targets in this rule, we select the appropriate one by comparing the deepest
locus node and the node prior to rule.lhs (Line 18 in Alg. 2). To support an efficient
top-k lookup, we also introduce node.depth, which is the number of edges from node
to the trie’s root node.

Example 2. Consider twin tries in Fig. 2. Assume that the search string is “abmp” and
k = 1. The process for getting completion result with Alg. 2 can be found in the follow-
ing table1. “X” and “×” represents a string is found or not found in corresponding
trie: pra

in dictionary trie, prr
in rule trie. ut

1 In this table, we use the denotation abc to represent a node with label “c” with parent node
labeled “b”, in path root – a – b – c.



Iter. pra prr Note
1 Pop first element from queue: m = ε (root of TD), pr = abmp
1.1 ε X abmp × ε is found in TD , but abmp is not found in TR.
1.2 a X bmp × a is found in TD , but bmp is not found in TR.
1.3 ab X mp X mp is found in TR. The target of its links are c and abc. abc is the

correct link target. Push it to queue.
1.4 abm × Break loop.
2 Pop first element from queue: m = abc, pr = ∅
2.1 abc X ∅ Node abc is a leaf, so add it to result set. prr is empty, so push all

children of abc to queue (but it has no child).
3 The queue is empty. Therefore the final result is “abc”.
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Dict. strings:
(abc, 5)
(cde, 2)

Synonym rules:
bc   mn
c    mp
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Fig. 2: TT example

Complexity analyses. The worst-case time
complexity of top-k auto-completion (Alg. 2)
is O(pm+p2n2 +klm log(klm)+st), where
p is the length of search string, l is the max-
imum length of dictionary string, m and n is
the maximum number of children per node in
TD and TR respectively, s is the maximum
number of links per rule and t is the maxi-
mum number of applicable rules per dictio-
nary string. Specifically, we need to exam-
ine up to pm nodes in the dictionary trie to
check whether a substring is from dictionary.
We also need to lookup (pn + · · · + 2p + p) nodes in the rule trie in order to find
possible synonym links. After we find one result, we need to scan upward l nodes on
the way to root, which is totally O(kl) time corresponding to k completions. As the
algorithm inserts all nodes in corresponding path to the priority queue, we may add up
to klm nodes, contributing an additional O(klm log(klm)) term. Finally, O(st) time is
required to determining the correct synonym link.

Algorithm 1: Generation of TT
Input: Set of dictionary strings (D) and set of synonym rules (R)
Output: Twin tries 〈TD, TR〉

1 for each of rules in R, add its rhs to TR

2 foreach s ∈ D do
3 add s to TD

4 foreach r ∈ R do
5 if r can be applied onto s then
6 f ← deepest locus node of r in TR

7 foreach lo ∈ all locus points of r on s do
8 l← node from TD , which represents r.lhs in decendents of lo
9 f .links.add(l, r.lhs.length - r.rhs.length) // (target, delta)

10 recursively set every score of every node in TD to the maximum among its descendants
11 return 〈TD, TR〉



Algorithm 2: Top-k completions with TT
Input: Dictionary trie TD , rule trie TR, search string p and k > 0
Output: List of top-k completions C

1 Q← empty priority queue; C ← empty priority list; Q.push(〈root node of TD , 0〉)
2 while Q 6= ∅ do
3 〈m, ipr 〉 ← Q.pop() // (current node, index of remaining p)
4 pr ← p.substring(0, ipr )
5 for i from 0 to pr .length do
6 (pra , prr )← pr .split(i)
7 l← deepest locus node of pra in descendants of node m
8 if l is not found then break the for loop
9 else if l is a leaf node then

10 C.add(full string of l)
11 if |C| = k then return C

12 if prr is empty string then
13 foreach c ∈ l.children do Q.push(〈c, ipr + i〉)
14 else
15 ns← locus points of prr in TR

16 foreach n ∈ ns do
17 foreach lk ∈ n.links do
18 dest← from lk.target, go up (lk.depth + lk.delta) levels
19 if l and dest is the same node then
20 Q.push(〈lk.target, ipr + i + lk.target.depth〉)
21

22 return C

5 Expansion trie (ET)

In thi section, we describe a compressed trie data structure to combine both dictionary
and synonym strings into one trie, called Expansion Trie (ET).

The baseline algorithm is to generate a set of new strings by applying permutations
of rules onto the dictionary strings, then add them to trie. The baseline algorithm has
two problems: (i) Dictionary and synonym nodes are mixed together in the final trie, and
thus it is hard to tell whether a string is from dictionary; (ii) the algorithm is extremely
slow because the generation of permutations for all applicable rules in strings.
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Fig. 3: ET example

To address the above problems, we pro-
pose a new algorithm for generating the ET,
which minimizes running time and memory
cost by removing duplicate nodes. We treat
every dictionary string as a unique path from
root to leaf, while all its available synonym
rules as “branches” that attached to it. At the
end of each branch, a synonym link points
it back to the dictionary string. Addition-
ally, we set the score of every synonym node
(new nodes introduced by expanding syn-



Algorithm 3: Generation of ET
Input: Set of dictionary strings (D), set of synonym rules (R)
Output: Expansion trie T

1 add all strings in D to T
2 foreach s ∈ D do
3 foreach r ∈ R do
4 if r can be applied onto s then
5 foreach f ∈ all locus points of r on s do
6 l← deepest node of r.lhs in decendents of f
7 p← f .parent // synonym nodes attach here
8 add each char of r.rhs with score = 0 as descendants of p
9 e← select the last node just added (i.e. deepest node in synonym nodes)

10 e.links.add(l)
11 recursively set every score of every node in T to the maximum among its descendants
12 return T

Algorithm 4: Top-k completions with ET
Input: Expansion trie T , search string p and k > 0
Output: List of top-k completions C

1 Q← empty priority queue; C ← empty priority list; H ← empty hash table
2 locus← deepest locus point of p in T
3 if locus is a dictionary character then Q.push(locus)
4 foreach l← target node of locus.links do Q.push(l)
5 while Q 6= ∅ do
6 m← Q.pop()
7 if m is a leaf node then
8 add full string of m to C with m.score
9 if |C| = k then return C

10 if m is the last node representing p, or there is more chars from p after m then
11 Q.push(m.links.target)
12 if there is more chars from p after m then
13 Q.push(node holds next character of p after m)
14 else push all non-synonym nodes of m.children to Q

15 return C

onym rules on dictionary trie) to 0, because we do not give such suggestion. The pseudo-
code of the proposed algorithm can be found in Alg. 3.

Example 3. Given dictionary strings d1 : (abc, 5) and d2 : (cde, 2) and synonym rules
r1 : bc→ mn and r2 : c→ mp, the ET generated by Alg. 3 can be seen in Fig. 3. ut

We introduce a similar solution to perform top-k suggestions on ET as in Alg. 4.
Specifically, we find the deepest node in the trie that matches the search string as much
as possible (Line 2 in Alg. 4) and insert it into a priority queue. We also insert the target
node of its synonym links (if any) to the queue. Then we iteratively pop the node with
highest score as the current node. We add it to the result if it is a leaf node. Otherwise,
if there is still any other remaining character, we find the corresponding child node



and add it to the queue. When all characters are processed, we add all the children of
the current node to the queue (Lines 12 to 14 in Alg. 4). This procedure loops until k
completions have been found or the priority queue becomes empty.
Complexity analyses. The worst-case time complexity of top-k on ET is O(pm +
klm log(klm)). According to the proposed algorithm, we need to examine up to pm
nodes in the trie to find the locus node. After reaching one leaf node, we need to
scan upward l nodes on the way to root, which is totally O(kl) time corresponding
to k completions. Add up to klm nodes to the binary heap contributes an additional
O(klm log(klm)) term. Although we use the same notation “m” here, one should no-
tice that its value is larger compared to TT because the expansion of rules introduced
more nodes, thus the maximum number of children is increased.

6 Hybrid tries (HT)

By comparing the top-k time complexity of TT and ET, it can be seen that the latter
will need more time as it needs to (i) look up the rule trie iteratively for every sub-
string of p, (ii) check all synonym links in order to find the correct one. Therefore, we
propose a solution that selects some synonym rules and expands them while leaving
the remaining ones in rule trie, so that fewer synonym links need to be checked, which
leads to a smaller running time. Note that the more rules we expand, the more space it
takes. Therefore the problem can be defined as follows:

Problem 2 (Optimal construction of HT). Let ST T and SET be the space cost of TT
and ET, given a space threshold S ∈ [ST T , SET ], D and R, our task is to build two
tries 〈TD, TR〉 to minimize the top-k lookup time while satisfying the space constraint
S.

With endeavors to make the lookup search based on HT more efficient, our ap-
proach is to solve Problem 2 with a combinatorial optimization algorithm based on the
frequency of rules in applicable strings. Therefore, the policy of selecting rules for ex-
pansion turns into maximizing the total number of applicable rules on dictionary strings
within space constraints.

Let ri be the item (synonym rule) at index i in R, {v1, v2, ..., v|R|} be the frequency
(time-of-use) of items, {w1, w2, ..., v|R|} be its weight, i.e. space cost when expanding
it to the dictionary trie, {x1, x2, ..., x|R|} be a set of integers either 0 or 1, it can be seen
that the problem is similar with a 0/1 knapsack problem, which is known NP-hard:

maximize
|R|∑
i=1

vixi subject to
|R|∑
i=1

wixi ≤ S

However, our problem is not such straightforward because the space cost of a syn-
onym rule may be smaller depends on the presence of other rules in the trie. Consider
dictionary string abcde and two rules r1 : abc→ mn and r2 : abc→ mnp. Expanding
r1 adds two synonym nodes m and mn. Then when expanding r2, it uses existing nodes
m and mn which are generated by r1 before. Thus only one new node mnp is created.
By considering such interactions, we are able to formalize Problem 2 more precisely as
follows:



Problem 3 (0/1 Knapsack Problem with Item Interactions).

maximize
|R|∑
i=1

vixi subject to
|R|∑
i=1

fi(xi, xj |j ∈ Pi) ≤ S

fi(·) is the weight function that returns the weight of item ri with knowledges of xi,
current items in knapsack (their indexes are stored in C), and Pi as indexes of all items
which have interactions with ri. Specifically, the weight function can have three types
of return values: (i) fi(·) = 0 when xi = 0, i.e. item ri is not selected. (ii) fi(·) = wi

when xi = 1 and @xj = 1|j ∈ (Pi ∩ C). (iii) fi(·) ∈ (0, wi), otherwise.
It is possible to adapt the dynamic programming (DP) method to Problem 3, by sort-

ing the items so that all items which ri depends on are located before ri. This ensures
all interacted items are processed before ri itself. However, in our problem the cycli-
cal cannot be ignored [1]: we can say that the weight of r1 depends on the presence
or absence of r2, but it is also true to say r2 depends on r1, since r2 can also provide
the two synonym nodes which reused by r1. Due to the hardness of the problem, some
approximate methods are proposed, by grouping interacted items as a single knapsack
item [8] or cutting weak interactions [11]. However, all such solutions are not able to
give a bound of the estimation error. In this paper, we present a new solution follow-
ing a branch and bound (B&B) fashion by tightening the upper- and lower-bound with
considerations of item interactions, which gives an exact solution subject to total value.

We now introduce three terms used in our algorithm. All items can be classified into
one of three categories at any specific stage of B&B algorithm [7]: (i) Included: the item
is explicitly included in the solution. According to our definition, item ri is an included
item when xi = 1. (ii) Excluded: the item is explicitly excluded in the solution, i.e.
xi = 0. (iii) Unassigned: the item is not processed yet. At any given stage, this type of
items should only contains further items that has not been tested in any branch.
Tight upper-bounds For knapsack with independent items, the method for obtaining
an upper-bound is based on the solution of fractional knapsack problem, where a part
of an item can be take into the knapsack when the space does not fit it as a whole. A
greedy algorithm by Dantzig et al. [4] can be employed to obtain an optimal result. In
our case, we sort items by assuming all interactions already existed. That is, for item
ri, we assume every item ∀j ∈ Pi, xj = 1. We use wmin,i to indicate this minimum
weight. This can guarantee that the greedy algorithm returns a solution which is the
largest one among all feasible upper-bounds.
Tight lower-bounds A classic method to obtain the lower-bound is to look forward
down the unassigned items in current solution, and greedy take (in order) items into
knapsack until the weight budget left cannot fit the next item. We extend this method by
assuming every interacted item rj is either excluded or unassigned, i.e. ∀j ∈ Pi, xj = 0.
Measuring exact weight We add the exact space consumption for expanding ri to
knapsack in each branch operation. One straightforward solution can be “scan all items
to accumulate any possible savings”. Unfortunately, this method ignores that fact that
most items are not interacted and will be very slow when |R| is large because each
scan requires O(|R|) time. As in our solution, we perform a partition prior to B&B by
grouping all items to several parts: ri has interactions with all other items in the same
part, but not with items in other parts. As the result, saving can only be obtained when ri

is included together with items from the same part, otherwise it has its original weight.



Algorithm 5: Construction of HT
Input: Set of dictionary strings (D), set of synonym rules (R) and space threshold (S)
Output: Hybrid tries 〈TD, TR〉

1 P ← partition rules in R
2 sort R by items’ minimum weight (i.e. assume all interactions exist)
3 〈Rin,Rex〉 ← solve knapsack problem with branch and bound, with bound functions

upper_bound(ri) and lower_bound(ri), ri is the current item in the decision tree. in
each branch, the exact weight of ri is obtained by exact_weight (ri, Pri , Xinc), where
Pri is the part ri belongs to, Xinc is the set of included items at current step

4 TD ← build dictionary trie with D and expand rules in Rin following Alg. 3
5 〈TD, TR〉 ← build rules trie with D and Rex following Alg. 1, while let TD be the

ready-to-use dictionary trie
6 return 〈TD, TR〉
7 Function upper_bound (ri)
8 ubi ← ri.weight // take current weight
9 while ubi < S do

10 take ri, add its minimum weight to ubi; i← i + 1
11 ubi ← ubi + vi

wmin,i
× (S − ubi) // take a fraction of next item

using its minimum weight
12 return ubi

13 Function lower_bound (ri)
14 lbi ← ri.weight
15 while lbi < S do
16 take ri, add its original weight to lbi; i← i + 1
17 return lbi

18 Function exact_weight (ri, Pri , Xinc)
19 wreal ← wi

20 foreach r|r 6= ri, r ∈ Pri do
21 if ∃r ∈ Xinc then wreal ←min(wreal, fi(xi, r))
22 return wreal

The partition allows us to use a heuristic in each branch operation by scanning though
only items in the same part with ri, instead of all items.
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Fig. 4: HT example

Construction of HT and top-k comple-
tions Our algorithm for solving Problem 2 is
given in Alg. 5. Specifically, we highlight our
three extensions to B&B algorithm as sepa-
rate functions.

Example 4. Given dictionary strings d1 :
(abc, 5) and d2 : (cde, 2) and synonym rules
r1 : bc→ mn and r2 : c→ mp, the HT gen-
erated by expanding r1 according to Alg. 5 is
illustrated in Fig. 4.



We can preform top-k completions queries on HT by extending Alg. 2: every time
when checking possible synonym rules in pr (before Line 12), we push the target of
l.links with foreach t ← target of l.links do Q.push(t).

Because the top-k completions algorithm on HT is similar with TT, their worst-time
complexity is also the same. However, the value of s (i.e. maximum number of links
per synonym rule) is smaller since we reduced the number of synonym links per rule
by moving some rules to the dictionary tire.

7 Experimental analysis

To evaluate the effectiveness of the proposed top-k completion techniques, Twin Tries
(TT), Expansion Trie (ET) and Hybrid Tries (HT), we compare their effectiveness on
the following datasets from different application scenarios on a Intel i7-4770 3.4GHz
processor with 8GB of RAM, complied with OpenJDK 1.8.0 on Ubuntu 14.04 LTS.

7.1 Datasets

We use three datasets: conference publications and book titles (DBLP), US addresses
(USPS), and gene/protein data (SPROT). These datasets differ from each other in terms
of rule-number, rule-complexity, data-size and string-length. Our goal in choosing these
diverse sources is to understand the usefulness of algorithms in different real world
environments.
DBLP: We collected 24,810 conference publications and book titles from DBLP web-
site (http://dblp.uni-trier.de/). We obtained 214 synonym pairs between the common
words and their abbreviations used in computer science field listed on IEEE website.
USPS: We downloaded common person names, street names, city names and states
from the United States Postal Service website (http://www.usps.com). We then gener-
ated 1,000,000 records as dictionary strings, each of which contains a person name, a
street name, a city name and a state. We also gathered extensive information about the
common nicknames and format of addresses, from which we obtained 341 synonym
pairs. The synonym pairs covers a wide range of alternate representations of common
strings, e.g. Texas→ TX.
SPROT: We obtained 1,000,000 gene/protein records from the UniProt website (http://
www.uniprot.org/). Each record contains an entry name, a protein name, a gene name
and its organism. In this dataset, each protein name has 5 ∼ 22 synonyms. We generated
1,000 synonym rules describing relations between different names.

Table 1 gives the characteristics of the three datasets. The scores of each string are
randomly generated in this experiment.

7.2 Data structure construction

Space We evaluate the compactness of the generated data structures by reporting
in Tab. 2 the average number of bytes per string (including score and relations e.g.
node.parent). For comparison, we also report the size of the data structure generated
by the baseline method (BL) described in the expansion trie (see Sec. 5). Across the



Table 1: Characteristics of datasets.
Name of
Dataset

# of
Strings

String Len
(avg/max)

# of Synonym
Rules

Rules Per String
(avg/max)

DBLP 24,810 60 / 295 368 2.51 / 11
USPS 1,000,000 25 / 43 341 2.15 / 12

SPROT 1,000,000 20 / 28 1,000 2.11 / 12

datasets, the baseline method produce the largest trie structure, about 4KB per dic-
tionary string for DBLP dataset. For larger dataset like USPS and SPROT, it crashes
because of exponentially increasing number of new strings. The ET structure takes the
second largest space consumption, while TT consistently takes the smallest size, about
58% smaller than ET on SPROT dataset. Finally, the HT structure (we set the space
threshold to 0.5× (SET − ST T )) takes a larger size than TT but smaller than ET.

Table 2: Data structure sizes in bytes per string.
Name of Dataset BL TT ET HT

DBLP 4,250.98 528.71 638.76 578.12
USPS Failed 160.49 200.03 172.64

SPROT Failed 128.82 217.55 161.25

To better understand how the space is used, we present in Fig. 5 the storage break-
down of each of the techniques on SPROT dataset. We break the total space down to (i)
Space taken by dictionary nodes, including labels, scores and relations like node.parent
and node.children, (ii) Expanded synonym nodes: size of synonym nodes in the dic-
tionary trie and (iii) Unexpanded synonym nodes: size of synonym nodes in rule trie
TR. For ET, the number of synonym nodes in the trie is about 15 times more than in
rule trie (TT) due to the numerous different locus points. The latter eliminates multiple
copies of nodes, but will incur some sacrifice in top-k speed. For HT, the most frequent
rules are expanded like ET, while half size of less-frequent rules are left in the rule trie.
This results a moderate space consumption between TT and ET.
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Fig. 5: Data structure size breakdown on SPROT dataset

Time In addition to the space cost, we also measure their running time on three dataset
and report them in Fig. 6. For small dataset like DBLP, all four methods finish within a
reasonable time, however, the baseline method is nearly 30 times slower than the other
three. It also failed to finish within 300 seconds on large dataset USPS and SPROT. For



the other three methods, TT is always the fastest on all datasets, because it does not
need to create synonym nodes for each application, but use the existing ones and add
a new synonym link. The HT runs the slowest due to the additional computation in the
B&B method.
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Fig. 6: Construction time

7.3 Top-k efficiency

This set of experiments studies the overall efficiency of our auto-completion. We gen-
erate test queries by randomly applying synonym rules onto the dictionary strings, then
we randomly pick a substring of each new string, formed 50,000 query strings for each
dataset. We ran every query string based on the TT, ET and HT structures and plot-
ted the running time in Fig. 7. We observed that for shorter queries (length 2 to 10), all
three algorithms runs very fast, less than 0.5ms for small dataset and 1ms for large ones.
However, the running time of TT and HT grows as the length of query becomes longer.
The primary reason for this is that they need to lookup every substring of query in the
rule trie, which consumes more time (Lines 4 to 7 in Alg. 2). Determining the correct
link further slows down the speed. Besides, as HT expanded some synonym rules, its
speed is faster for the reason that less synonym links being checked. In contrast, ET
runs the fastest in all experiments, whose running time is not affected by the length of
search strings.
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Fig. 7: Top-10 auto-completion lookup time

We observe that running time of HT is more like TT especially on SPROT dataset.
As the space threshold is the key parameter to control the construction of HT, we pre-
form one more set of experiments to deeply study the effect of this parameter on the
lookup running time. We define a ratio α ∈ [0, 1] where α = S

SET−ST T
. We select



several values for α, build HT and then perform top-10 lookup. The speed of top-10 op-
erations corresponding to different αs is illustrated in Fig. 8. The result shows that when
α becomes larger, i.e. larger space threshold for HT, the top-k lookup becomes faster.
When α = 0 and α = 1, the time is exactly the same with TT and ET, respectively.
This experiment shows that if we select a space threshold between 75% and 100% of
SET − ST T , we can expect to have more than 50% performance boost compared with
TT while performing lookup.
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Fig. 8: Top-10 auto-completion lookup time of HT on SPROT dataset, in respect of
different space ratios α
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Fig. 9: Data structure size and average top-10 time related to number of dictionary
strings on USPS dataset

7.4 Scalability

To assess the scalability of the data structures, we compare the structure size and top-10
speed on different subsets of the USPS dataset. We generate these subsets by taking
the top-N items in decreasing score order. Figure 9a shows that the sizes of all three
structures increase linearly, where TT and TT are the smallest and largest, respectively.
In Fig. 9b, the average time per completion for ET does not increase as the dataset
grows, while TT and HT become slower as number of dictionary string becomes larger.
This is because the increasing number of strings brings more synonym links need to
be checked. However, compared with TT, who has a sharp increasing trend (about 3ms
per million strings), the time of HT grows slowly, only from 0.18 to 0.6ms while data
grows from 0.5M to 0.9M.



8 Conclusion and future work

In this paper, we have presented three data structures, i.e. TT, ET and HT, to address
the problem of top-k completion with synonyms, each with different space and time
complexity trade-offs. Experiments on large-scale datasets show that our algorithms can
support synonym-based retrieval of completions of strings at about a microsecond per-
completion for more than 1 million dictionary strings and thousands of synonym rule
while taking small memory space. As our future work, it would be interesting to work on
the problem called “synonym ambiguity”. For instance, “DB” can be either “Database”
or “Development Bank” depending on different contexts. We will explore the context
of words to select appropriate synonym rules for auto-completion.
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