247 research outputs found

    Gene expression signatures defining fundamental biological processes in pluripotent, early, and late differentiated embryonic stem cells

    Get PDF
    Investigating the molecular mechanisms controlling the in vivo developmental program postembryogenesis is challenging and time consuming. However, the developmental program can be partly recapitulated in vitro by the use of cultured embryonic stem cells (ESCs). Similar to the totipotent cells of the inner cell mass, gene expression and morphological changes in cultured ESCs occur hierarchically during their differentiation, with epiblast cells developing first, followed by germ layers and finally somatic cells. Combination of high throughput -omics technologies with murine ESCs offers an alternative approach for studying developmental processes toward organ-specific cell phenotypes. We have made an attempt to understand differentiation networks controlling embryogenesis in vivo using a time kinetic, by identifying molecules defining fundamental biological processes in the pluripotent state as well as in early and the late differentiation stages of ESCs. Our microarray data of the differentiation of the ESCs clearly demonstrate that the most critical early differentiation processes occur at days 2 and 3 of differentiation. Besides monitoring well-annotated markers pertinent to both self-renewal and potency (capacity to differentiate to different cell lineage), we have identified candidate molecules for relevant signaling pathways. These molecules can be further investigated in gain and loss-of-function studies to elucidate their role for pluripotency and differentiation. As an example, siRNA knockdown of MageB16, a gene highly expressed in the pluripotent state, has proven its influence in inducing differentiation when its function is repressed

    Real-world treatment trajectories of adults with newly diagnosed asthma or COPD

    Get PDF
    Background There is a lack of knowledge on how patients with asthma or chronic obstructive pulmonary disease (COPD) are globally treated in the real world, especially with regard to the initial pharmacological treatment of newly diagnosed patients and the different treatment trajectories. This knowledge is important to monitor and improve clinical practice. Methods This retrospective cohort study aims to characterise treatments using data from four claims (drug dispensing) and four electronic health record (EHR; drug prescriptions) databases across six countries and three continents, encompassing 1.3 million patients with asthma or COPD. We analysed treatment trajectories at drug class level from first diagnosis and visualised these in sunburst plots. Results In four countries (USA, UK, Spain and the Netherlands), most adults with asthma initiate treatment with short-acting Ăź2 agonists monotherapy (20.8%-47.4% of first-line treatments). For COPD, the most frequent first-line treatment varies by country. The largest percentages of untreated patients (for asthma and COPD) were found in claims databases (14.5%-33.2% for asthma and 27.0%-52.2% for COPD) from the USA as compared with EHR databases (6.9%-15.2% for asthma and 4.4%-17.5% for COPD) from European countries. The treatment trajectories showed step-up as well as step-down in treatments. Conclusion Real-world data from claims and EHRs indicate that first-line treatments of asthma and COPD vary widely across countries. We found evidence of a stepwise approach in the pharmacological treatment of asthma and COPD, suggesting that treatments may be tailored to patients' needs.</p

    Real-world treatment trajectories of adults with newly diagnosed asthma or COPD

    Get PDF
    Background There is a lack of knowledge on how patients with asthma or chronic obstructive pulmonary disease (COPD) are globally treated in the real world, especially with regard to the initial pharmacological treatment of newly diagnosed patients and the different treatment trajectories. This knowledge is important to monitor and improve clinical practice. Methods This retrospective cohort study aims to characterise treatments using data from four claims (drug dispensing) and four electronic health record (EHR; drug prescriptions) databases across six countries and three continents, encompassing 1.3 million patients with asthma or COPD. We analysed treatment trajectories at drug class level from first diagnosis and visualised these in sunburst plots. Results In four countries (USA, UK, Spain and the Netherlands), most adults with asthma initiate treatment with short-acting Ăź2 agonists monotherapy (20.8%-47.4% of first-line treatments). For COPD, the most frequent first-line treatment varies by country. The largest percentages of untreated patients (for asthma and COPD) were found in claims databases (14.5%-33.2% for asthma and 27.0%-52.2% for COPD) from the USA as compared with EHR databases (6.9%-15.2% for asthma and 4.4%-17.5% for COPD) from European countries. The treatment trajectories showed step-up as well as step-down in treatments. Conclusion Real-world data from claims and EHRs indicate that first-line treatments of asthma and COPD vary widely across countries. We found evidence of a stepwise approach in the pharmacological treatment of asthma and COPD, suggesting that treatments may be tailored to patients' needs.</p

    Calculating daily dose in the Observational Medical Outcomes Partnership Common Data Model

    Get PDF
    Purpose: We aimed to develop a standardized method to calculate daily dose (i.e., the amount of drug a patient was exposed to per day) of any drug on a global scale using only drug information of typical observational data in the Observational Medical Outcomes Partnership Common Data Model (OMOP CDM) and a single reference table from Observational Health Data Sciences And Informatics (OHDSI). Materials and Methods: The OMOP DRUG_STRENGTH reference table contains information on the strength or concentration of drugs, whereas the OMOP DRUG_EXPOSURE table contains information on patients' drug prescriptions or dispensations/claims. Based on DRUG_EXPOSURE data from the primary care databases Clinical Practice Research Datalink GOLD (United Kingdom) and Integrated Primary Care Information (IPCI, The Netherlands) and healthcare claims from PharMetrics® Plus for Academics (USA), we developed four formulas to calculate daily dose given different DRUG_STRENGTH reference table information. We tested the dose formulas by comparing the calculated median daily dose to the World Health Organization (WHO) Defined Daily Dose (DDD) for six different ingredients in those three databases and additional four international databases representing a variety of healthcare settings: MAITT (Estonia, healthcare claims and discharge summaries), IQVIA Disease Analyzer Germany (outpatient data), IQVIA Longitudinal Patient Database Belgium (outpatient data), and IMASIS Parc Salut (Spain, hospital data). Finally, in each database, we assessed the proportion of drug records for which daily dose calculations were possible using the suggested formulas. Results: Applying the dose formulas, we obtained median daily doses that generally matched the WHO DDD definitions. Our dose formulas were applicable to >85% of drug records in all but one of the assessed databases. Conclusion: We have established and implemented a standardized daily dose calculation in OMOP CDM providing reliable and reproducible results

    Genomic variation and strain-specific functional adaptation in the human gut microbiome during early life

    Get PDF
    The human gut microbiome matures towards the adult composition during the first years of life and is implicated in early immune development. Here, we investigate the effects of microbial genomic diversity on gut microbiome development using integrated early childhood data sets collected in the DIABIMMUNE study in Finland, Estonia and Russian Karelia. We show that gut microbial diversity is associated with household location and linear growth of children. Single nucleotide polymorphism- and metagenomic assembly-based strain tracking revealed large and highly dynamic microbial pangenomes, especially in the genus Bacteroides, in which we identified evidence of variability deriving from Bacteroides-targeting bacteriophages. Our analyses revealed functional consequences of strain diversity; only 10% of Finnish infants harboured Bifidobacterium longum subsp. infantis, a subspecies specialized in human milk metabolism, whereas Russian infants commonly maintained a probiotic Bifidobacterium bifidum strain in infancy. Groups of bacteria contributing to diverse, characterized metabolic pathways converged to highly subject-specific configurations over the first two years of life. This longitudinal study extends the current view of early gut microbial community assembly based on strain-level genomic variation.Peer reviewe

    Genome-wide promoter analysis of histone modifications in human monocyte-derived antigen presenting cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Monocyte-derived macrophages and dendritic cells (DCs) are important in inflammatory processes and are often used for immunotherapeutic approaches. Blood monocytes can be differentiated into macrophages and DCs, which is accompanied with transcriptional changes in many genes, including chemokines and cell surface markers.</p> <p>Results</p> <p>To study the chromatin modifications associated with this differentiation, we performed a genome wide analysis of histone H3 trimethylation on lysine 4 (H3K4me3) and 27 (H3K27me3) as well as acetylation of H3 lysines (AcH3) in promoter regions. We report that both H3K4me3 and AcH3 marks significantly correlate with transcriptionally active genes whereas H3K27me3 mark is associated with inactive gene promoters. During differentiation, the H3K4me3 levels decreased on monocyte-specific CD14, CCR2 and CX3CR1 but increased on DC-specific TM7SF4/DC-STAMP, TREM2 and CD209/DC-SIGN genes. Genes associated with phagocytosis and antigen presentation were marked by H3K4me3 modifications. We also report that H3K4me3 levels on clustered chemokine and surface marker genes often correlate with transcriptional activity.</p> <p>Conclusion</p> <p>Our results provide a basis for further functional correlations between gene expression and histone modifications in monocyte-derived macrophages and DCs.</p

    Exome sequencing of a colorectal cancer family reveals shared mutation pattern and predisposition circuitry along tumor pathways

    Get PDF
    The molecular basis of cancer and cancer multiple phenotypes are not yet fully understood. Next Generation Sequencing promises new insight into the role of genetic interactions in shaping the complexity of cancer. Aiming to outline the differences in mutation patterns between familial colorectal cancer cases and controls we analyzed whole exomes of cancer tissues and control samples from an extended colorectal cancer pedigree, providing one of the first data sets of exome sequencing of cancer in an African population against a background of large effective size typically with excess of variants. Tumors showed hMSH2 loss of function SNV consistent with Lynch syndrome. Sets of genes harboring insertions-deletions in tumor tissues revealed, however, significant GO enrichment, a feature that was not seen in control samples, suggesting that ordered insertions-deletions are central to tumorigenesis in this type of cancer. Network analysis identified multiple hub genes of centrality. ELAVL1/HuR showed remarkable centrality, interacting specially with genes harboring non-synonymous SNVs thus reinforcing the proposition of targeted mutagenesis in cancer pathways. A likely explanation to such mutation pattern is DNA/RNA editing, suggested here by nucleotide transition-to-transversion ratio that significantly departed from expected values (p-value 5e-6). NFKB1 also showed significant centrality along with ELAVL1, raising the suspicion of viral etiology given the known interaction between oncogenic viruses and these proteins
    • …
    corecore