204 research outputs found

    Ego Identity and Relational and Social Aggression Mediated by Elaborative and Deep Processing

    Get PDF
    Abstract: In this investigation, late adolescents' (N = 629) ego identity status (e.g., identity achievement, identity diffusion, identity moratorium, and identity foreclosure), cognitive processing style, and self-reported use of relational aggression and social aggression were measured in order to assess potential relationships among these constructs. Four separate models were used to test these hypotheses, and the results showed support for some but not all the four hypotheses. In this sample, it appears that individuals with high levels of cognitive sophistication who lack social maturity by which to resolve relationship problems were more likely to use social aggression than those with lower levels of cognitive processing skills or with higher levels of emotional maturity

    NOA1 Functions in a Temperature-Dependent Manner to Regulate Chlorophyll Biosynthesis and Rubisco Formation in Rice

    Get PDF
    NITRIC OXIDE-ASSOCIATED1 (NOA1) encodes a circularly permuted GTPase (cGTPase) known to be essential for ribosome assembly in plants. While the reduced chlorophyll and Rubisco phenotypes were formerly noticed in both NOA1-supressed rice and Arabidopsis, a detailed insight is still necessary. In this study, by using RNAi transgenic rice, we further demonstrate that NOA1 functions in a temperature-dependent manner to regulate chlorophyll and Rubisco levels. When plants were grown at 30°C, the chlorophyll and Rubisco levels in OsNOA1-silenced plants were only slightly lower than those in WT. However, at 22°C, the silenced plants accumulated far less chlorophyll and Rubisco than WT. It was further revealed that the regulation of chlorophyll and Rubisco occurs at the anabolic level. Etiolated WT seedlings restored chlorophyll and Rubisco accumulations readily once returned to light, at either 30°C or 15°C. Etiolated OsNOA1-silenced plants accumulated chlorophyll and Rubisco to normal levels only at 30°C, and lost this ability at low temperature. On the other hand, de-etiolated OsNOA1-silenced seedlings maintained similar levels of chlorophyll and Rubisco as WT, even after being shifted to 15°C for various times. Further expression analyses identified several candidate genes, including OsPorA (NADPH: protochlorophyllide oxidoreductase A), OsrbcL (Rubisco large subunit), OsRALyase (Ribosomal RNA apurinic site specific lyase) and OsPuf4 (RNA-binding protein of the Puf family), which may be involved in OsNOA1-regulated chlorophyll biosynthesis and Rubisco formation. Overall, our results suggest OsNOA1 functions in a temperature-dependent manner to regulate chlorophyll biosynthesis, Rubisco formation and plastid development in rice

    Organizing in the Anthropocene

    Get PDF
    The functioning of the biosphere and the Earth as a whole is being radically disrupted due to human activities, evident in climate change, toxic pollution and mass species extinction. Financialization and exponential growth in production, consumption and population now threaten our planet’s life-support systems. These profound changes have led Earth System scientists to argue we have now entered a new geological epoch – the Anthropocene. In this introductory article to the Special Issue, we first set out the origins of the Anthropocene and some of the key debates around this concept within the physical and social sciences. We then explore five key organizing narratives that inform current economic, technological, political and cultural understandings of the Anthropocene and link these to the contributions in this Special Issue. We argue that the Anthropocene is the crucial issue for organizational scholars to engage with in order to not only understand on-going anthropogenic problems but also help create alternative forms of organizing based on realistic Earth–human relations

    Essential Domains of Anaplasma phagocytophilum Invasins Utilized to Infect Mammalian Host Cells

    Get PDF
    Anaplasma phagocytophilum causes granulocytic anaplasmosis, an emerging disease of humans and domestic animals. The obligate intracellular bacterium uses its invasins OmpA, Asp14, and AipA to infect myeloid and non-phagocytic cells. Identifying the domains of these proteins that mediate binding and entry, and determining the molecular basis of their interactions with host cell receptors would significantly advance understanding of A. phagocytophilum infection. Here, we identified the OmpA binding domain as residues 59 to 74. Polyclonal antibody generated against a peptide spanning OmpA residues 59 to 74 inhibited A. phagocytophilum infection of host cells and binding to its receptor, sialyl Lewis x (sLex-capped P-selectin glycoprotein ligand 1. Molecular docking analyses predicted that OmpA residues G61 and K64 interact with the two sLex sugars that are important for infection, α2,3-sialic acid and α1,3-fucose. Amino acid substitution analyses demonstrated that K64 was necessary, and G61 was contributory, for recombinant OmpA to bind to host cells and competitively inhibit A. phagocytophilum infection. Adherence of OmpA to RF/6A endothelial cells, which express little to no sLex but express the structurally similar glycan, 6-sulfo-sLex, required α2,3-sialic acid and α1,3-fucose and was antagonized by 6-sulfo-sLex antibody. Binding and uptake of OmpA-coated latex beads by myeloid cells was sensitive to sialidase, fucosidase, and sLex antibody. The Asp14 binding domain was also defined, as antibody specific for residues 113 to 124 inhibited infection. Because OmpA, Asp14, and AipA each contribute to the infection process, it was rationalized that the most effective blocking approach would target all three. An antibody cocktail targeting the OmpA, Asp14, and AipA binding domains neutralized A. phagocytophilumbinding and infection of host cells. This study dissects OmpA-receptor interactions and demonstrates the effectiveness of binding domain-specific antibodies for blocking A. phagocytophilum infection

    Cultural geographies of extinction: animal culture amongst Scottish ospreys

    Get PDF
    This paper explores cultural geographies of extinction. I trace the decline of the Scottish osprey during the nineteenth century, and its enduring, haunting presence in the landscape today. Taking inspiration from the environmental humanities, extinction is framed as an event affecting losses that exceed comprehension in terms merely of biological species numbers and survival rates. Disavowing the ‘species thinking’ of contemporary conservation biopolitics, the osprey’s extinction story pays attention to the worth of ‘animal cultures’. Drawing a hybrid conceptual framework from research in the environmental humanities, ‘speculative’ ethology and more-than-human geographies, I champion an experimental attention to the cultural geographies of animals in terms of historically contingent, communally shared, spatial practices and attachments. In doing so, I propose nonhuman cultural geographies as assemblages that matter, and which are fundamentally at stake in the face of extinction
    corecore