23 research outputs found

    Design, baseline characteristics, and retention of African American light smokers into a randomized trial involving biological data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>African Americans experience significant tobacco-related health disparities despite the fact that over half of African American smokers are light smokers (use ≤10 cigarettes per day). African Americans have been under-represented in smoking cessation research, and few studies have evaluated treatment for light smokers. This paper describes the study design, measures, and baseline characteristics from <it>Kick It at Swope III </it>(KIS-III), the first treatment study of bupropion for African American light smokers.</p> <p>Methods</p> <p>Five hundred forty African American light smokers were randomly assigned to receive bupropion (150mg bid) (n = 270) or placebo (n = 270) for 7 weeks. All participants received written materials and health education counseling. Participants responded to survey items and provided blood samples for evaluation of phenotype and genotype of CYP2A6 and CYP2B6 enzymes involved in nicotine and bupropion metabolism. Primary outcome was cotinine-verified 7-day point prevalence smoking abstinence at Week 26 follow-up.</p> <p>Results</p> <p>Of 2,628 individuals screened, 540 were eligible, consented, and randomized to treatment. Participants had a mean age of 46.5 years and 66.1% were women. Participants smoked an average of 8.0 cigarettes per day, had a mean exhaled carbon monoxide of 16.4ppm (range 1-55) and a mean serum cotinine of 275.8ng/ml. The mean Fagerström Test for Nicotine Dependence was 3.2, and 72.2% of participants smoked within 30 minutes of waking. The average number of quit attempts in the past year was 3.7 and 24.2% reported using pharmacotherapy in their most recent quit attempt. Motivation and confidence to quit were high.</p> <p>Conclusion</p> <p>KIS-III is the first study designed to examine both nicotine and bupropion metabolism, evaluating CYP2A6 and CYP2B6 phenotype and genotype in conjunction with psychosocial factors, in the context of treatment of African American light smokers. Of 1629 smokers screened for study participation, only 18 (1.1%) were ineligible to participate in the study because they refused blood draws, demonstrating the feasibility of recruiting and enrolling African American light smokers into a clinical treatment trial involving biological data collection and genetic analyses. Future evaluation of individual factors associated with treatment outcome will contribute to advancing tailored tobacco use treatment with the goal of enhancing treatment and reducing health disparities for African American light smokers.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="URL">NCT00666978</a></p

    A new antiviral scaffold for human norovirus identified with computer-aided approaches on the viral polymerase

    Get PDF
    Human norovirus is the leading cause of acute gastroenteritis worldwide, affecting every year 685 million people. In about one third of cases, this virus affects children under five years of age, causing each year up to 200,000 child deaths, mainly in the developing countries. Norovirus outbreaks are associated with very significant economic losses, with an estimated societal cost of 60 billion dollars per year. Despite the marked socio-economic consequences associated, no therapeutic options or vaccines are currently available to treat or prevent this infection. One promising target to identify new antiviral agents for norovirus is the viral polymerase, which has a pivotal role for the viral replication and lacks closely homologous structures in the host. Starting from the scaffold of a novel class of norovirus polymerase inhibitors recently discovered in our research group with a computer-aided method, different new chemical modifications were designed and carried out, with the aim to identify improved agents effective against norovirus replication in cell-based assays. While different new inhibitors of the viral polymerase were found, a further computer-aided ligand optimisation approach led to the identification of a new antiviral scaffold for norovirus, which inhibits human norovirus replication at low-micromolar concentrations.status: Published onlin

    Mathematical analysis of the global dynamics of a power law model for HIV infection of CD4+ T cells

    No full text
    We analyze a mathematical power law model that describes HIV infection of CD4+ T cells. We report that the number of critical points depends on n , where n is a positive integer. We show that for any positive integer n the infection – free equilibrium is asymptotically stable if the reproduction number R0 &lt; 1 and unstable if R0 &gt; 1. The method of proof involves Rene Descartes’ theory of positive solutions. The graph of X(uninfected T cells), T*(infected T cells) and V(HIV virus) against time t shows how the groups- the infected, the susceptible and the virus vary with time for various values of the parameter in the model. The results show that the positive integer has a considerable effect on the variations of the groups with time.Keywords: CD4+ T cells, critical / equilibrium points, reproduction number, asymptotic stability

    Solution of Lie’ nard Equations using Modified Initial Guess Variational Iterative Method (MIGVIM)

    No full text
    In this work, we obtained approximate solutions for Lie’ nard equations using modified initial guess variational iteration method (MIGVIM). This method proves to be very promising for obtaining approximate solutions for this kind of equations. We also demonstrate the superiority of MIGVIM over the decomposition method and the variational iteration method for this type of equations by providing numerical comparisons.Keywords: Variational Iteration, Lagrange multiplier, Lie’ nard equations, Adomian decomposition, Modified initial guess variational iterationJournal of the Nigerian Association of Mathematical Physics, Volume 20 (March, 2012), pp 61 – 6

    Characterization and Thermomechanical Properties of Thermoplastic Potato Starch

    No full text
    ABSTRACT Thermoplastic starch was prepared from potato starch using Glycerol as the plasticizer. It was shown to have modified crystallinity and better thermal stability as compared to native starch. The complexation of the plasticizer with the starch also resulted in a shift of the O-H and C-H bands on the FT-IR spectra indicating replacement of Hydroxyl bonds between the starch polymer chains with weaker hydrogen bonds between the starch and the plasticizer. The SEM micrographs shows the break down of the polygonal shaped granules of the starch to patches of various sizes. The DMA indicated that the storage modulus of the TPS (E&apos;) decreases with increase in temperature indicating that there is loss in stiffness of the material with rise in temperature as expected in plastic materials. While the mechanical loss factor (tanδ) increases with increase in temperature the reverse trend of the modulus. In the thermal analysis, both TGA and DSC showed that the TPS has better thermal stability as compared to native starch

    Human norovirus culture in B cells

    No full text
    Human noroviruses (HuNoVs) are a leading cause of foodborne disease and severe childhood diarrhea, and they cause a majority of the gastroenteritis outbreaks worldwide. However, the development of effective and long-lasting HuNoV vaccines and therapeutics has been greatly hindered by their uncultivability. We recently demonstrated that a HuNoV replicates in human B cells, and that commensal bacteria serve as a cofactor for this infection. In this protocol, we provide detailed methods for culturing the GII.4-Sydney HuNoV strain directly in human B cells, and in a coculture system in which the virus must cross a confluent epithelial barrier to access underlying B cells. We also describe methods for bacterial stimulation of HuNoV B cell infection and for measuring viral attachment to the surface of B cells. Finally, we highlight variables that contribute to the efficiency of viral replication in this system. Infection assays require 3 d and attachment assays require 3 h. Analysis of infection or attachment samples, including RNA extraction and RTRT-qPCR, requires similar to 6 h

    Human norovirus culture in B cells

    No full text
    Human noroviruses (HuNoVs) are a leading cause of foodborne disease and severe childhood diarrhea, and they cause a majority of the gastroenteritis outbreaks worldwide. However, the development of effective and long-lasting HuNoV vaccines and therapeutics has been greatly hindered by their uncultivability. We recently demonstrated that a HuNoV replicates in human B cells, and that commensal bacteria serve as a cofactor for this infection. In this protocol, we provide detailed methods for culturing the GII.4-Sydney HuNoV strain directly in human B cells, and in a coculture system in which the virus must cross a confluent epithelial barrier to access underlying B cells. We also describe methods for bacterial stimulation of HuNoV B cell infection and for measuring viral attachment to the surface of B cells. Finally, we highlight variables that contribute to the efficiency of viral replication in this system. Infection assays require 3 d and attachment assays require 3 h. Analysis of infection or attachment samples, including RNA extraction and RT-qPCR, requires ∼6 h
    corecore