22 research outputs found

    Distinguishing Molecular Features and Clinical Characteristics of a Putative New Rhinovirus Species, Human Rhinovirus C (HRV C)

    Get PDF
    Background: Human rhinoviruses (HRVs) are the most frequently detected pathogens in acute respiratory tract infections (ARTIs) and yet little is known about the prevalence, recurrence, structure and clinical impact of individual members. During 2007, the complete coding sequences of six previously unknown and highly divergent HRV strains were reported. To catalogue the molecular and clinical features distinguishing the divergent HRV strains, we undertook, for the first time, in silico analyses of all available polyprotein sequences and performed retrospective reviews of the medical records of cases in which variants of the prototype strain, HRV-QPM, had been detected

    Insights into Minor Group Rhinovirus Uncoating: The X-ray Structure of the HRV2 Empty Capsid

    Get PDF
    Upon attachment to their respective receptor, human rhinoviruses (HRVs) are internalized into the host cell via different pathways but undergo similar structural changes. This ultimately results in the delivery of the viral RNA into the cytoplasm for replication. To improve our understanding of the conformational modifications associated with the release of the viral genome, we have determined the X-ray structure at 3.0 Γ… resolution of the end-stage of HRV2 uncoating, the empty capsid. The structure shows important conformational changes in the capsid protomer. In particular, a hinge movement around the hydrophobic pocket of VP1 allows a coordinated shift of VP2 and VP3. This overall displacement forces a reorganization of the inter-protomer interfaces, resulting in a particle expansion and in the opening of new channels in the capsid core. These new breaches in the capsid, opening one at the base of the canyon and the second at the particle two-fold axes, might act as gates for the externalization of the VP1 N-terminus and the extrusion of the viral RNA, respectively. The structural comparison between native and empty HRV2 particles unveils a number of pH-sensitive amino acid residues, conserved in rhinoviruses, which participate in the structural rearrangements involved in the uncoating process

    Specific Receptor Usage in Plasmodium falciparum Cytoadherence Is Associated with Disease Outcome

    Get PDF
    Our understanding of the basis of severe disease in malaria is incomplete. It is clear that pathology is in part related to the pro-inflammatory nature of the host response but a number of other factors are also thought to be involved, including the interaction between infected erythrocytes and endothelium. This is a complex system involving several host receptors and a major parasite-derived variant antigen (PfEMP1) expressed on the surface of the infected erythrocyte membrane. Previous studies have suggested a role for ICAM-1 in the pathology of cerebral malaria, although these have been inconclusive. In this study we have examined the cytoadherence patterns of 101 patient isolates from varying clinical syndromes to CD36 and ICAM-1, and have used variant ICAM-1 proteins to further characterise this adhesive phenotype. Our results show that increased binding to CD36 is associated with uncomplicated malaria while ICAM-1 adhesion is raised in parasites from cerebral malaria cases

    Nonrandom intragenic variations in patterns of codon bias implicate a sequential interplay between transitional genetic drift and funcitonal amino acid selection.

    No full text

    Crystallographic and cryo EM analysis of virion-receptor interactions

    No full text
    Cryoelectron microscopy has been used to determine the first structure of a virus when complexed with its glycoprotein cellular receptor. Human rhinovirus 16 (HRV16) complexed with the two amino-terminal, immunoglobulin-like domains of the intercellular adhesion molecule-1 (ICAM-1) shows that ICAM-1 binds into the 12Γ… deep β€œcanyon” on the surface of the virus. This is consistent with the prediction that the viral receptor attachment site lies in a cavity inaccessible to the host's antibodies. The atomic structures of HRV14 and CD4, homologous to HRV16 and ICAM-1, showed excellent correspondence with observed density, thus establishing the virus-receptor interactions
    corecore