237 research outputs found

    Effects of space radiation on electronic microcircuits

    Get PDF
    The single event effects or phenomena (SEP), which so far have been observed as events falling on one or another of the SE classes: Single Event Upset (SEU), Single Event Latchup (SEL) and Single Event Burnout (SEB), are examined. Single event upset is defined as a lasting, reversible change in the state of a multistable (usually bistable) electronic circuit such as a flip-flop or latch. In a computer memory, SEUs manifest themselves as unexplained bit flips. Since latchup is in general caused by a single event of short duration, the single event part of the SEL term is superfluous. Nevertheless, it is used customarily to differentiate latchup due to a single heavy charged particle striking a sensitive cell from more ordinary kinds of latchup. Single event burnout (SEB) refers usually to total instantaneous failure of a power FET when struck by a single particle, with the device shorting out the power supply. An unforeseen failure of these kinds can be catastrophic to a space mission, and the possibilities are discussed

    Hydrogen adsorption on and desorption from Si: Considerations on the applicability of detailed balance

    Get PDF
    The translational energy of D2 desorbed from Si(100) and Si(111) surfaces was measured and found roughly equal to the thermal expectation at the surface temperature Ts. Combining these results with previously measured internal state distributions, the total energy of the desorbed molecules is approximately equal to the equilibrium expectation at Ts. Thus adsorption experiments, which suggest a large energetic barrier, are at variance with desorption experiments, which exhibit a trivial adsorption barrier, and the applicability of detailed balance for this system needs to be reexamined

    Crystallographically Defined Silicon Macropore Membranes

    Get PDF
    Laser ablation with nanosecond-pulsed Nd:YAG laser irradiation combined with anisotropic alkaline etching of Si wafers creates 4–20 µm macropores that extend all the way through the wafer. The walls of these macropores are crystallographically defined by the interaction of the anisotropy of the etchant with the orientation of the single-crystal silicon substrate: rectangular/octagonal on Si(001), parallelepiped on Si(110), triangular/hexagonal on Si(111). Laser ablation can create pillars with peak-tovalley heights of over 100 µm. However, with nanosecondpulsed irradiation at 532 nm, the majority of this height is created by growth above the original plane of the substrate whereas for 355 nm irradiation, the majority of the height is located below the initial plane of the substrate. Repeated cycles of ablation and alkaline etching are required for membrane formation. Therefore, irradiating with 355 nm maintained better the crystallographically defined nature of the through-pores whereas irradiation at 532 nm led to more significant pore merging and less regularity in the macropore shapes. Texturing of the substrates with alkaline-etching induced pyramids or near-field modulation of the laser intensity by diffraction off of a grid or grating is used to modulate the growth of ablation pillars and the resulting macropores. Texturing causes the macropores to be more uniform and significantly improves the yield of macropores. The size range of these macropores may make them useful in single-cell biological studies

    Crystallographically Determined Etching and Its Relevance to the Metal-Assisted Catalytic Etching (MACE) of Silicon Powders

    Get PDF
    Metal-assisted catalytic etching (MACE) using Ag nanoparticles as catalysts and H2O2 as oxidant has been performed on single-crystal Si wafers, single-crystal electronics grade Si powders, and polycrystalline metallurgical grade Si powders. The temperature dependence of the etch kinetics has been measured over the range 5–37◦C. Etching is found to proceed preferentially in a h001i direction with an activation energy of ∼0.4 eV on substrates with (001), (110), and (111) orientations. A quantitative model to explain the preference for etching in the h001i direction is developed and found to be consistent with the measured activation energies. Etching of metallurgical grade powders produces particles, the surfaces of which are covered primarily with porous silicon (por-Si) in the form of interconnected ridges. Silicon nanowires (SiNW) and bundles of SiNW can be harvested from these porous particles by ultrasonic agitation. Analysis of the forces acting between the metal nanoparticle catalyst and the Si particle demonstrates that strongly attractive electrostatic and van der Waals interactions ensure that the metal nanoparticles remain in intimate contact with the Si particles throughout the etch process. These attractive forces draw the catalyst toward the interior of the particle and explain why the powder particles are etched equivalently on all the exposed faces

    Cosmic ray simulation and testing program

    Get PDF
    Single event upset (SEU) and latchup vulnerabilities were determined for a number of parts of interest to NASA space programs. In cases where a threshold linear energy transfer (LET) for SEU could be measured, an upset rate in a low inclination Space Shuttle orbit was computed. The predicted upset rates are extremely low, except for the devices with LET thresholds below the geomagnetic cutoff for altitude and inclination of the Space Shuttle orbit. While some of the devices do exhibit latchup, the cross sections and threshold LETs are such that the risk associated with flying these devices in low, near equatorial orbits is small if not negligible

    Working group written presentation: Trapped radiation effects

    Get PDF
    The results of the Trapped Radiation Effects Panel for the Space Environmental Effects on Materials Workshop are presented. The needs of the space community for new data regarding effects of the space environment on materials, including electronics are listed. A series of questions asked of each of the panels at the workshop are addressed. Areas of research which should be pursued to satisfy the requirements for better knowledge of the environment and better understanding of the effects of the energetic charged particle environment on new materials and advanced electronics technology are suggested

    Hierarchical Porous Silicon and Porous Silicon Nanowires Produced with Regenerative Electroless Etching (ReEtching) and Metal Assisted Catalytic Etching (MACE)

    Get PDF
    ReEtching produces nanostructured silicon when a catalytic agent, e.g. dissolved V2O5, is used to facilitate etching between Si and H2O2. H2O2 regenerates dissolved V in a 5+ oxidation state, which initiates etching by injecting holes into the Si valence band. Independent control over the extent of reaction (controlled by the amount of H2O2 added) and the rate of reaction (controlled by the rate at which H2O2 is pumped into the etchant solution) allows us to porosify Si substrates of arbitrary size, shape and doping, including wafers, single-crystal powders, polycrystalline powders, metallurgical grade powder, Si nanowires, Si pillars and Si powders that have been textured with metal-assisted catalytic etching (MACE). Similarly, improved control over the nucleation and etching in MACE is achieved by pumped delivery of reagents. Nanowires are not produced directly by MACE of powders, rather they form when a porosified layers is cleaved by capillary forces or sonication

    Low-Load Metal-Assisted Catalytic Etching Produces Scalable Porosity in Si Powders

    Get PDF
    The recently discovered low-load metal-assisted catalytic etching (LL-MACE) creates nanostructured Si with controllable and variable characteristics that distinguish this technique from the conventional high-load variant. LL-MACE employs 150 times less metal catalyst and produces porous Si instead of Si nanowires. In this work, we demonstrate that some of the features of LL-MACE cannot be explained by the present understanding of MACE. With mechanistic insight derived from extensive experimentation, it is demonstrated that (1) the method allows the use of not only Ag, Pd, Pt, and Au as metal catalysts but also Cu and (2) judicious combinations of process parameters such as the type of metal, Si doping levels, and etching temperatures facilitate control over yield (0.065−88%), pore size (3−100 nm), specific surface area (20−310 m2·g−1), and specific pore volume (0.05−1.05 cm3·g−1). The porous structure of the product depends on the space-charge layer, which is controlled by the Si doping and the chemical identity of the deposited metal. The porous structure was also dependent on the dynamic structure of the deposited metal. A distinctive comet-like structure of metal nanoparticles was observed after etching with Cu, Ag, Pd, and, in some cases, Pt; this structure consisted of 10−50 nm main particles surrounded by smaller (\u3c5 nm) nanoparticles. With good scalability and precise control of structural properties, LL-MACE facilitates Si applications in photovoltaics, energy storage, biomedicine, and water purification
    • …
    corecore